

PURCHASING SECTION 13450 – 104 Avenue, Surrey, BC V3T 1V8 Tel: 604-590-7274 E-mail: <u>purchasing@surrey.ca</u>

ADDENDUM No. 2

 REQUEST FOR QUOTATION No.:
 1220-040-2017-083

 TITLE:
 Material Screening and Filling Operation

 ADDENDUM ISSUE DATE:
 June 12, 2017

 DATE:
 PREFER TO RECEIVE SUBMISSION ON OR BEFORE June 23, 2017

INFORMATION FOR CONTRACTOR

Contractors are advised that Addendum No. 2 to the RFQ is hereby issued by the City. This addendum shall form part of the Contract Documents and is to be read, interpreted and coordinated with all other parts. The following information is provided to answer question raised by Contractors for the above named project, to the extent referenced and shall become a part thereof. No consideration will be allowed for extras due to the Contractor or any sub-Contractor not being familiar with this addendum. This Addendum No. 2 contains (46) pages in total.

QUESTION AND ANSWER:

- Q1. Will the Reference Documents referred to in Schedule D Appendix 1 be provided as part of this tender?
- A1. Schedule D Appendix 1 lists four Reference Documents. Three out four documents were posted on June 09, 2017. The remaining fourth document entitled, AEE Report (Drawing Number Specification 4) is issued in Addendum No. 2.

- END OF ADDENDUM -

January 12, 2017

Project 1286

Surrey City Development Corporation 1870 - 13450 102 Avenue Surrey, BC V3T 5X3

ATTENTION: Mr. Ross Yamaguchi Senior Development Manager

REFERENCE: Stokes Pit, Surrey, BC Supplemental Site Investigation Results Geotechnical and Environmental

1 INTRODUCTION

Active Earth Engineering Ltd. (Active Earth) previously completed a desktop study to compile existing geotechnical and environmental information regarding the large surplus soil stockpile located on the south end of the site, and environmental condition of the entire site. The results are presented in our November 24, 2016 letter report entitled "*Campbell Heights Phase 2, Stokes Pit, Surrey, BC, Soil Stockpile Assessment.*"

A Supplemental Site Investigation (SSI) was completed in accordance with our recommendations provided in the November 24, 2016 report. This report presents the findings of the SSI.

2 SCOPE OF WORK

The following scope of work was completed:

- A single monitoring well (AE16-MW1) was installed on the Site and near the west site boundary to assess potential impacts from a former diesel fuel spill on an adjacent property. The fuel spill occurred at the "Green Waste Recycling" Facility located near the corner of 192nd Street and 24th Avenue. A groundwater sample was collected from the monitoring well and analyzed for Potential Contaminants of Concern (PCOCs) associated with a diesel spill.
- 2. A single monitoring well (AE16-MW2) has been completed adjacent to the recycled asphalt stockpile. A groundwater sample was collected from this monitoring well and analyzed for PCOCs associated with asphalt. This monitoring well was also sampled for PCOCs associated with fill of unknown origin in order to assess groundwater quality in the aquifer beneath the large fill stockpile.

- 3. Three auger holes (AE16-BH1 through AE16-BH3) drilled within the stockpile to observe the soil types and to collect soil samples for laboratory analyses including grain size distribution, moisture content and Atterberg Limits testing.
- 4. Three Cone Penetration Tests (CPT) were completed adjacent to the three boreholes to assess the in-situ density of the soil within the stockpile. The primary objective was to assess the soil conditions near the base of the pile in order to evaluate if the material is suitable to remain in place during redevelopment of the site.
- 5. In addition, Active Earth reviewed the January 29, 2014 memorandum *Review of Dyke Fill Material at Stokes Pit, Surrey, BC* completed by Thurber Engineering Ltd.

3 SUMMARY OF ENVIRONMENTAL INVESTIGATION RESULTS

The laboratory analytical results for the soil and groundwater samples collected during the SSI are presented in the attached Tables 1 through 5, and discussed in the following.

3.1 Soil Analytical Results

A total of three soil samples were analyzed from AE16-MW1, to assess potential impacts from the former diesel spill on the adjacent property. The concentrations of all PCOCs analyzed were below the laboratory detection limit, indicating that no contamination is present at that location.

A total 13 samples were analyzed from the large fill stockpile, collected from AE16-MW2, AE16-BH1, AE16-BH2 and AE16-BH3. Some detectable concentrations of hydrocarbons are noted in 12 out of the 13 samples, however, the concentrations are relatively low and below the CSR standards for residential land use (RL). There was no contamination identified in any the soil samples, including hydrocarbons, metals and volatile organic compounds.

3.2 Groundwater Analytical Results

Groundwater samples were collected from monitoring wells AE16-MW1 and AE16-MW2, and analyzed for the appropriate PCOCs as described above.

The concentrations of all parameters analyzed for were below the applicable CSR standards. No groundwater contamination was identified associated with the former diesel spill, and no groundwater contamination was identified associated with the large fill stockpile.

Several dissolved metals concentrations are noted to be elevated beneath the stockpile (AE16-MW2) as compared to the sample from AE16-MW1 located outside of the stockpilepile footprint. In particular, the concentrations of cobalt and iron are noted to exceed the CSR irrigation water (IW) standards beneath the fill pile. The water chemistry AE16-MW2 overall has a higher hardness and is indicative of a longer subsurface residence time as compared to the water chemistry at AE16-MW1.

4 SUMMARY OF GEOTECHNICAL INVESTIGATION RESULTS

Drilling was completed by Van Mars Drilling and the CPT testing was carried out by Schwartz Geotechnical. Active Earth supervised all drilling and collected soil samples for laboratory analyses of geotechnical and chemical properties.

The locations of the boreholes, monitoring wells and CPT testing are shown on the attached Site Plan, Figure 1. Test hole logs and CPT results are attached.

4.1 Fill Soil Descriptions

The soil encountered in the four test holes (AE16-MW2, AE16-BH1, AE16-BH2 and AE16-BH3) within the large stockpile are similar to that observed in previous work undertaken by others. The soil stockpile includes a range of soil types, but the largest portion of soil is classified as a well-graded silty sand.

Small layers of sand with gravel and lower silt content were encountered at a few discrete locations, however, significant volumes of this type of material was not observed in this investigation, nor in previous investigations by others.

4.2 Moisture Content

A total of 20 soil samples collected from the fill stockpile were analyzed for moisture content during the recent Active Earth investigation, as summarized in the following table:

Test Hole	Depth of Fill (m)	No. of Moisture Content Samples	Range of Moisture Contents (%)	No. of Samples Near Estimated Optimum Moisture (%)
MW2	9.2	4	12.1 – 21.5	3
BH1	11.8	6	16.4 – 51.0	1
BH2	8.2	5	9.2 – 135.5	1
BH3	6.7	5	16.5 – 28.4	0
Total		20		5

Summary of Moisture Content Results

The moisture contents for the samples analyzed are shown on the test hole logs. It is noted that significant organic content was found in numerous samples as evidenced by the several moisture contents greater than 50%.

Previous investigations by others has included some moisture content analysis of soil samples collected from the large stockpile, and the results are similar to above.

4.3 Standard Proctor Moisture-Density

Thurber Engineering Ltd. (Thurber) collected one soil sample from the large soil stockpile. It is noted that this sample appears to be obtained from a surficial smaller stockpile of material placed

atop the large stockpile on the site. Sample #4 was analyzed for grain size and standard Proctor moisture-density relationship (ASTM D698) and obtained the following properties:

_	% Passing	Moisture C	Maximum Dry	
Parameter	No. 200	As Received	Optimum	Density (kg/m3)
Silt Content	39.5			
Moisture Content (%)		16.4		
Calculated		16.4	15.5	1808
Oversize Corrected		16.4	13.3	1913

Summary	of Thurber	l aboratory	/ Results	for Sample #4
ounnary		Laboratory	/ itesuits	$101 0 a mple \pi$

For suitable placement of structural fill, the soil should be within 2% of the estimated optimum moisture content. As shown above in Section 4.2, of the 20 moisture content samples only five were within 2% of the estimate optimum standard Proctor moisture content. The oversize corrected moisture content was used since it is likely that if the fill was used, the oversize materials would not be separated from the fill.

It is noted that the optimum moisture content will vary depending on the fines content; as the fines content increases, so does the optimum moisture. Thurber noted that Sample #4 was suitable for structural fill placement; however, suitable moisture control would be required.

4.4 Grain Size Distribution

During the recent Active Earth investigations, four soil samples from the large fill stockpile were analyzed for grain size distribution. Previously, one sample from the large stockpile was analyzed by Thurber in 2014, and four previous samples were analyzed by Trow Associates Inc.in 2007. The following table summarizes all available grain size distribution results.

Consultant	Year	Location	Depth (m)	Soil Description	% Gravel	% Sand	% Fines
	2016	AE16-MW2	7.9	Silty SAND and GRAVEL	38.1	44.1	17.8
Active	2016	AE16-BH1	5.2	Silty SAND and GRAVEL	11.8	57.7	30.5
Earth	2016	AE16-BH2	8.2	SAND, some gravel	13	60.1	26.9
	2016	AE16-BH3	5.2	SILT, some sand	14.7	54.6	30.7
Thurber	2014	Stockpile 4	-	Gravelly, SILT and SAND	20.8	39.7	39.5
	2007	TP-6	0.7	SAND and GRAVEL, trace silt	43.5	54.9	1.6
Tress	2007	AH-9	0.7	SAND, trace silt and gravel	0	95.4	4.6
Trow	2007	AH-8	1.2	SAND and GRAVEL, trace silt	52.7	47	0.3
	2007	AH-8	5.2	Gravelly SAND, trace silt	12.7	87.1	0.2

Summary of Grain Size Distribution Analyses

4.5 Summary of SSI Geotechnical Results

The following presents a summary of the additional laboratory testing undertaken on the fill soils during the supplemental site investigation for geotechnical purposes:

Sample No.	Approx. Elevation (m)	Description	Moisture Content (%)	Plastic Limit (%)	Liquid Limit (%)	Potential Reusable Fill ?
AE16-BH1						
1		SILT, some Sand	27.8			
2		Silty SAND &	19.4			
4		Silty SAND	16.4			Yes
5		Organic SILT	51.0	32.6	33.5	
7		Low Plasticity CLAY	26.7	23.3	39.2	
AE16-MW2 ·	- Ground Surf	ace 47.5 masl				
1	46.6	Silty SAND	15.8			Yes
3	43.8	SILT & SAND	23.1			
4	43.2	Silty SAND	21.5			
6	41.1	Silty SAND	14.1			Yes
7	39.6	Silty SAND	12.1			Yes
AE16-BH2						
1		Silty SAND	9.3			Yes
3		Organic SILT	135.6			
4		CLAY	98.0			
5		SILT, trace Sand	18.3			
7		SILT & SAND	18.8	14.8	21.9	
AE16-BH3						
1		SAND	19.2			
2		Silty SAND	28.4			
3		Silty SAND	16.5			Yes
4		SILT, some Sand	27.1	22.3	26.0	
5		SILT	21.5			

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Potential Reusable Fill

The silty sand and gravel, and till-like fill with suitable moisture content of less than 16% may be used under access roads, parking areas and possibly under slabs. It is cautioned that any use of this fill must meet the structural requirements of each development and must be placed under strict moisture and compaction control supervision by the geotechnical engineer. Soil logs contain descriptions of organics, refuse and demolition debris which, along with high moisture contents, will make some of this material unsuitable as structural fill, requiring segregation during placement. Separation of the suitable material for re-use will be labour intensive.

It is noted that groundwater was identified during drilling at approximately 10m depth below the top of the stockpile, at approximately elevation 40 to 41 metres above sea level (masl). Accurate water level measurements were taken during sampling for chemical quality. The depth to groundwater beneath the large stockpile, measured in the monitoring well at AE16-MW2, was approximately 10.5m on December 15, 2016. When the elevation survey of the wells completed, these measurements can be converted into elevations, and will likely represent near high annual groundwater levels at the site. Piteau identified groundwater levels between 38.3 and 42.9 masl in nearby monitoring wells. The higher groundwater levels occurred at the north end of the site. The seasonal groundwater level fluctuation can be up to 4m based on Ministry of Environment Observation Wells. Any development should be completed above the high groundwater table with footings placed 0.5m above this level. As such, general final surface should at least 2.0m above the high groundwater table. Until accurate water level elevations can be calculated, we have assumed that the minimum grade elevation would be elevation 43.0 masl. Therefore, up to 3m of fill material could potentially remain below elevation 43.0 masl at the base of the existing soil stockpile to avoid excavation below the water table and provided the material is suitable for the proposed redevelopment.

Based on the three CPT results, the lower portion of the soil stockpile can be classified as medium dense and may remain in place under the following restrictions.

- 1. Additional site-specific testing should be undertaken when development plans are confirmed for each site, particularly if existing fills will remain;
- 2. Due to the variations in the fill materials, and potential presence of organics and debris, no fill is to remain under building footings, machine bases or where high floor loads are anticipated without further investigation to confirm their suitability;
- At least 1.0 m of suitable structural granular fill (<8% passing No. 200 sieve) should be placed over any fill remaining in place beneath floor slabs, access roads and parking areas. This structural fill should be compacted to 95% Modified Proctor Maximum Dry Density (MPMDD – ASTM D1557)

The total volume of fill has been estimated using previous borehole logs completed by other consultants and current borehole information obtained in late 2016 by Active Earth, as well as the April 2016 topographic plan provided by SCDC. Cross-sections are attached showing the interpretation of the borehole data. The volume of potentially re-useable fill soil has been

determined by physical descriptions, moisture content and with some reference to the Thurber sample analyzed for proctor moisture/density relationship. Stratigraphic interpretation between the boreholes is not possible due to the randomness of the fill placement.

Fill soil that may remain under floors, access roads, municipal roads and parking areas has been determined using the above noted criteria as well as the CPT results that are not exhaustive. We have assumed that fill may remain to elevation 43.0 masl (at least 2m above the expected watertable at the south end of the site). It is cautioned that additional investigation of the remaining fill areas will be required for site-specific purposes. Note that based on current information, only fill in the southern portion of the pile has the potential to remain subject to further investigation as shown on Cross-sections A-A' and B-B'.

Fill that is present the west of the property line is assumed to remain in place and is not included in the volume calculation below.

5.2 Non-Reusable Fill

There is a large volume of fill that is not suitable for structural purposes, including beneath roadways, slabs, etc. To reduce costs, it is recommended that this material be placed on site where non-structural fill can be accommodated such as a berm. Alternately, a large stockpile could remain, however, the fill will not be appropriate for light industrial development that we understand is being contemplated for the site.

The following presents a cost estimate to remove and dispose of the non-structural soil to an offsite dump site located near Bradner Road and Huntington Road area in Abbotsford. There are no restrictions on the environmental quality of the soil for disposal purposes. The current investigations by Active Earth and the previous investigations by Trow have not identified any chemical quality concerns in the fill. If a suitable closer site or city owned lands can be identified, the unit costs will be lower than the estimate provided below.

ltem	No of loads per Hour	Round Trip (hours)	Volume (m³)	Rate	Cost (m³)
Loading *	6		12	\$300	\$4.17
Transportation*		1.5	12	\$130	\$16.00
Disposal Fee*			12	\$90	\$7.50
Total					\$27.92

Estimated off-site Disposal Costs

Due to the large volume of soil, contract tendering may result in competitive industry pricing possibly reducing the estimated costs noted above.

5.3 Fill Assessment Approach

We have used the following statistical approach in determining the volume of fills characterized as reusable.

			of Reusable Fill	Total		% Potential
Location		th Interval (m)	Thickness (m)	Thickness of Fill in	% Potential Structural Fill	Structural Fill of Total
	Тор	Bottom		Boreholes (m)	in Borehole	Fill Pile
	0	1.8	1.8			
MW2	5.3	9.2	3.9			
			5.7	9.2	62%	4.5%
	3.6	6.1	2.5			
BH1	8.2	9.2	1			
			3.5	11.8	30%	2.7%
BH2	0	3.6	3.6	8.2	44%	2.8%
BH3	3	4.8	1.8	7.7	23%	1.4%
AH10	5.6	8.2	2.6	8.2	32%	2.0%
AH14	0	2.2	2.2	6.6	33%	1.7%
	0.8	3.4	2.6			
AH15	4	8.8	4.8			
			7.4	8.8	84%	5.8%
	0	1.8	1.8			
AH17	2	5.8	3.8			
			5.6	5.8	97%	2.2%
AH18	0	3.4	3.4	6.1	56%	1.3%
AH19	0	3	3	4.7	64%	2.3%
	0	2.1	2.1			
AH20	7.6	12.6	5			
			7.1	12.6	56%	2.8%
	0	0.6	0.6			
AH21	5.2	9.3	4.1			
			4.7	9.3	51%	1.8%
AH22	6.9	11	4.1	11	37%	3.2%
AH23	2.2	4	1.8	9.8	18%	1.4%
AH25	0	1.2	1.2	8.2	15%	0.9%
Totals			57.7	128		37%
Estimated 1	Fotal Vo	olume of Fil	l Pile (m3)			1,000,000
Estimated 1	Total Vo	olume of Po	tential Reusable	Fill (m3)		370,000
Estimated 1	Fotal Vo	olume of Po	otential Reusable	Fill – 50% RECO	/ERABLE (m3)	185,000
Estimated v	volume	of to Rema	in in Place (m3)			100,000
Estimated 1	Total Vo	olume of No	on-Structural Fill	to be moved (m3)		715,000

Estimated Potential Volume of Reusable Fill

1) Italicized values have been reduced by 50% based on presence of debris.

All debris that is present should be removed from reusable fills prior to placement. As a conservative approach, we have assumed that 50% of the fill containing debris will not be reused, since this would be labour intensive.

The total volume of potential reusable fill in the stockpile is estimated to be approximately 370,000 m³ which is based on a statistical interpolation of the information obtained from the boreholes listed in the table above. This is considered to be an upper-bound volume estimate, and it is expected that the volume material that can be reasonably recovered from the pile will be significantly less as a result of the sporadic occurrences in pockets throughout the pile. It is likely that the soils in the upper portion of the soil pile will be more readily recoverable that the sporadic pockets deeper in the pile. As such, we have provided a more conservative assumption that 50% of the potential reusable material present will be recoverable during site development. This approach considers that some of the re-usable soil will not be recovered due to mixing with surrounding un-useable soils during excavation. The method of excavation (bulk excavation, targeting re-useable soil pockets or stripping overburden in slices) will have some effect on the volume of recoverable soil as will weather and stockpiling and placement procedures for the recoverable soil.

6 CLOSURE

The recommendations provided in this preliminary report have been prepared for specific application to this Site and have been developed in a manner consistent with that level of care normally exercised by qualified professionals in accordance with standard practices. The recommendations made reflect Active Earth's best judgement in light of the information currently available. Any use which the client or a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such parties. Active Earth accepts no responsibility for damages, if any, suffered the Site owner or third parties as a result of business decisions made or actions based on this report.

It is noted that Active Earth has relied on information provided by SCDC; we make no statement on the accuracy of this information. This report is intended to provide as accurate an assessment of the fill quality based on the information currently available. Additional investigations may result in changes to the conclusions.

We trust that this provides the information you currently require. If you have any questions or comments, please feel free to contact the undersigned.

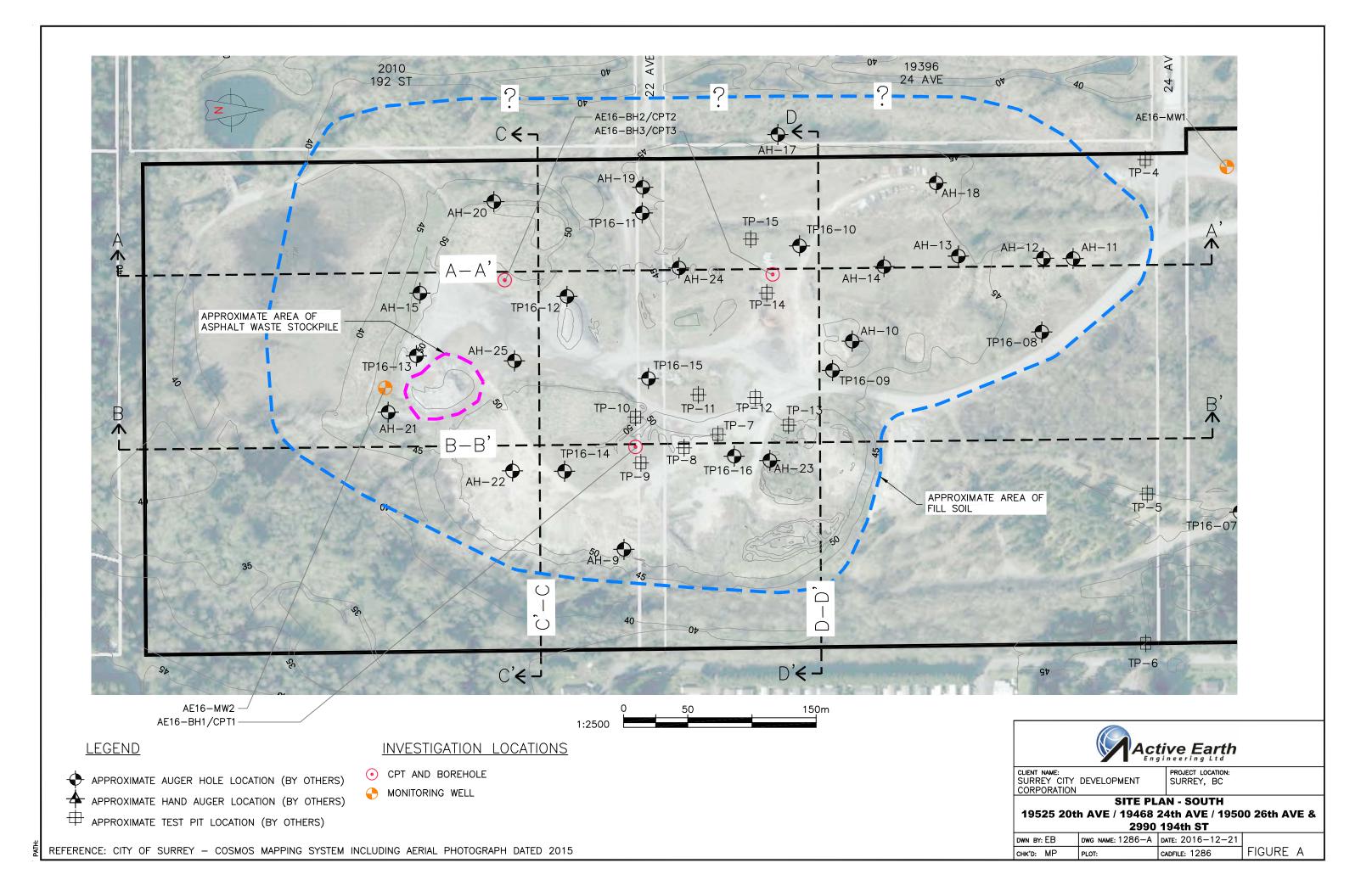
Yours truly,

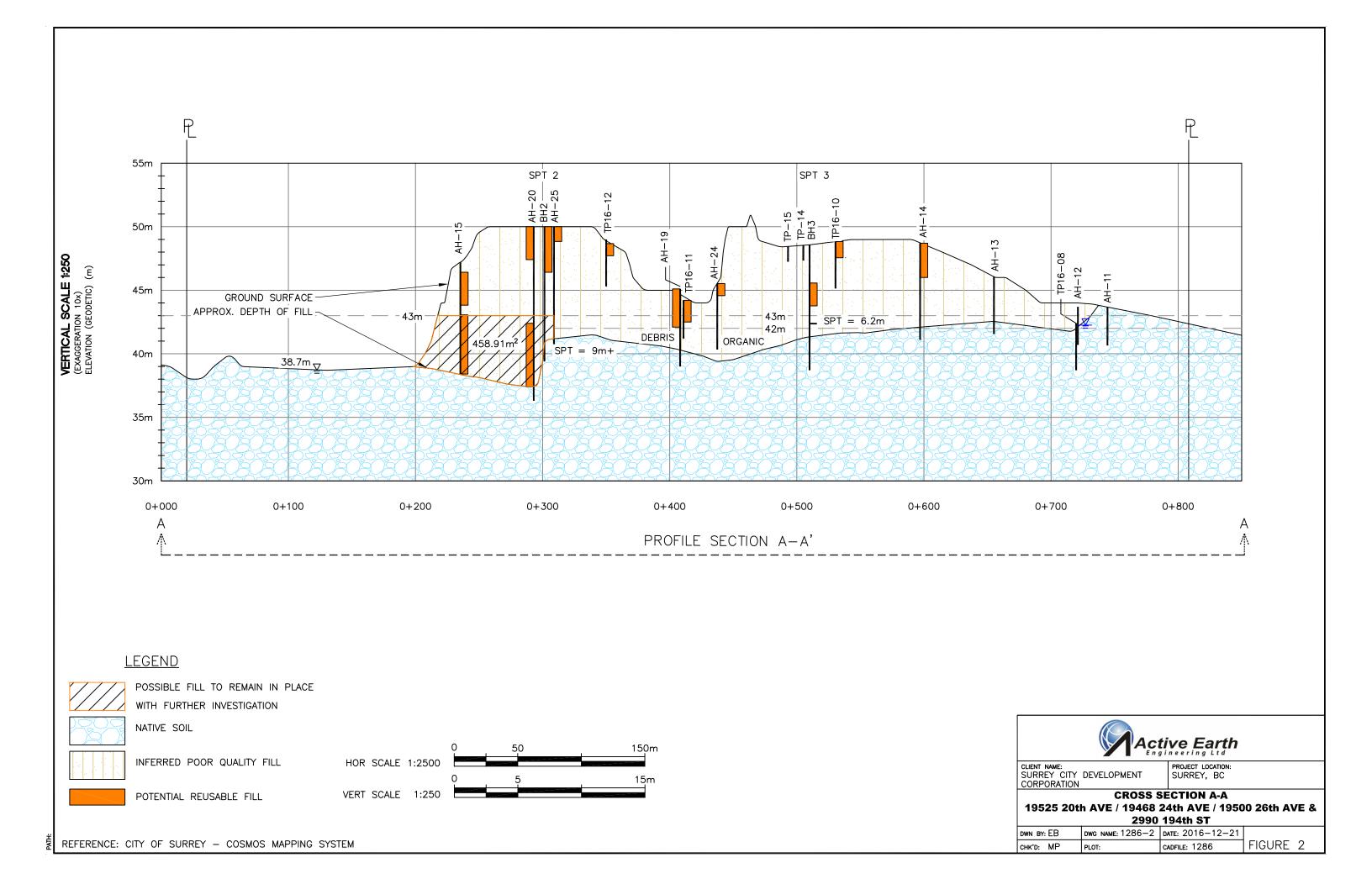
ACTIVE EARTH ENGINEERING LTD.

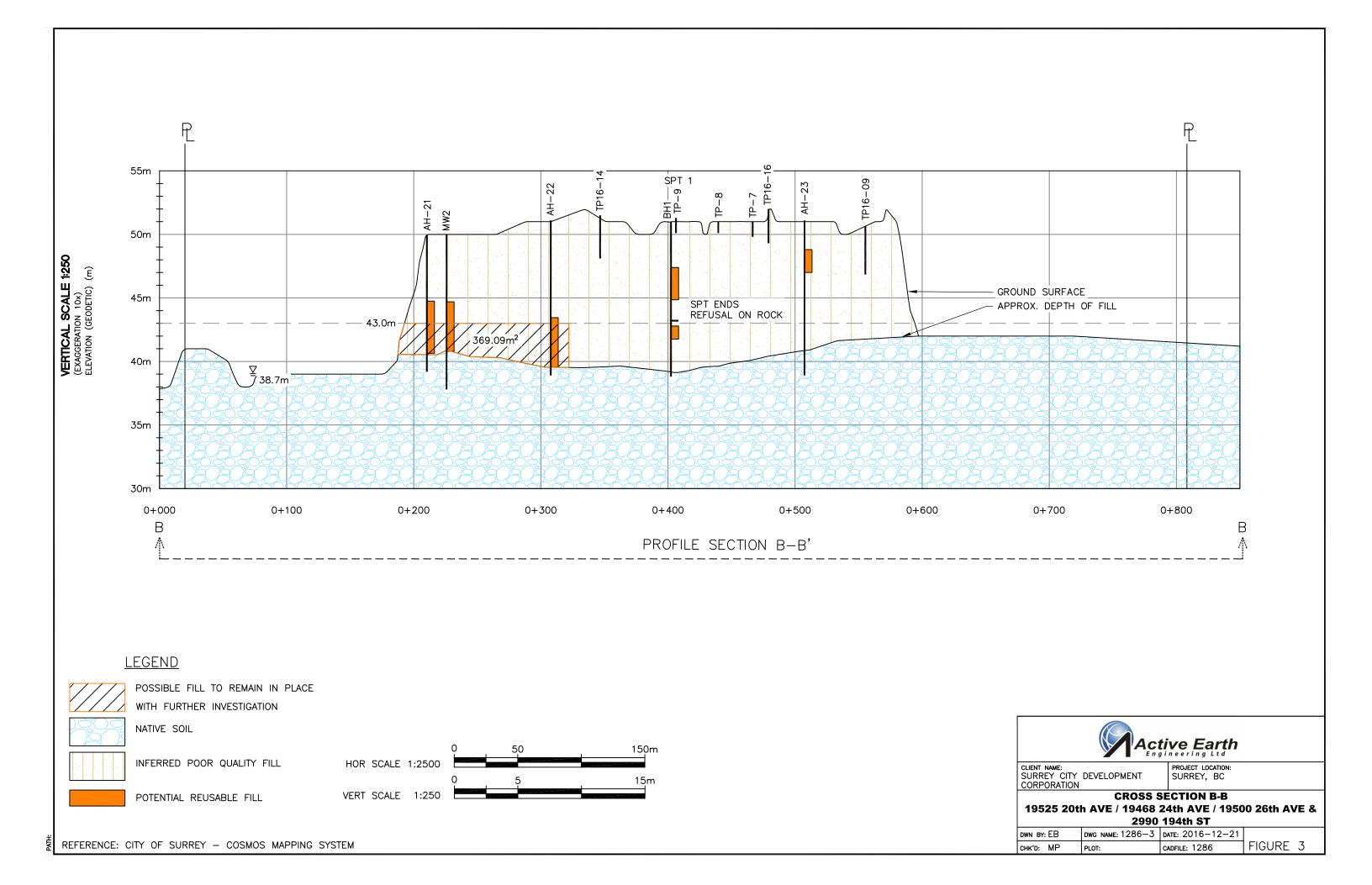
Matt Pye, P.Eng. Senior Engineer

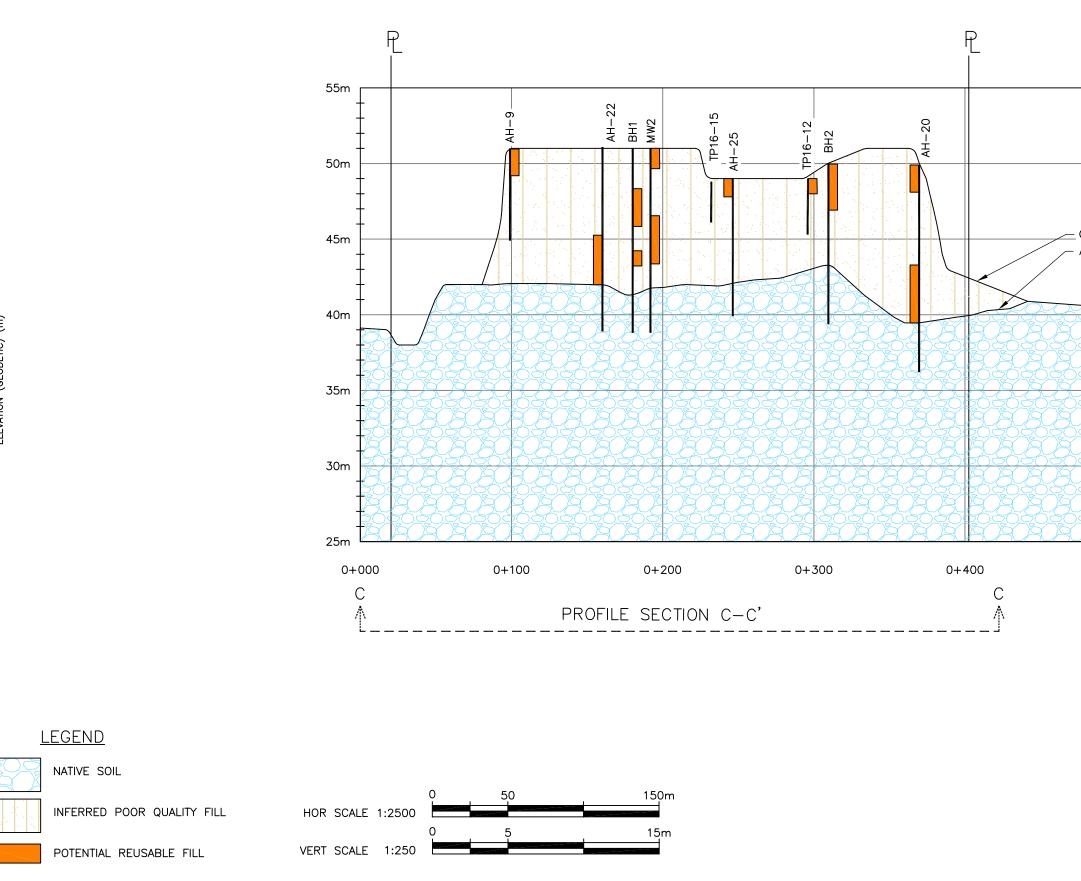
Freak

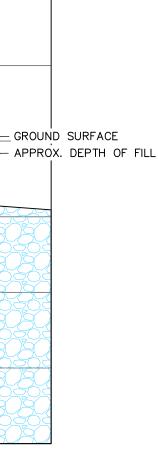
David Kneale, P.Geo. Senior Hydrogeologist


Attachments:	Figure 1 – Site Plan Figure 2 – Cross Section A-A Figure 3 – Cross Section B-B Figure 4 – Cross Section C-C Figure 5 – Cross Section D-D
	Table 1 – Analytical Results for Hydrocarbons in Soil Table 2 – Analytical Results for Metals in Soil Table 3 – Analytical Results for Volatile Organic Compounds in Soil Table 4 – Analytical Results for Hydrocarbons in Groundwater


Table 5 – Analytical Results for Metals in Groundwater

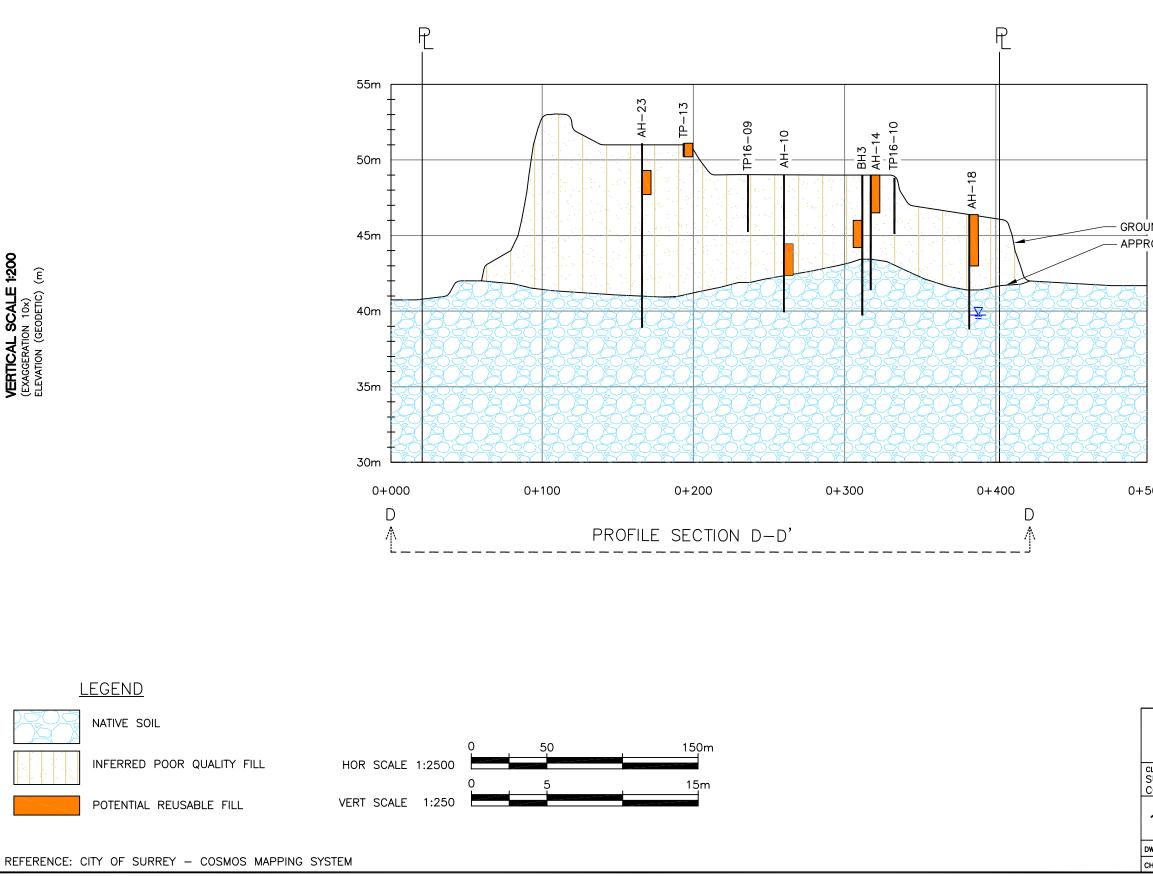

Borehole Logs CPT Results Valley Testing Geotechnical Lab Results


ATTACHMENTS



VERTICAL SCALE 1:200 (EXAGGERATION 10x) ELEVATION (GEODETIC) (m)

REFERENCE: CITY OF SURREY - COSMOS MAPPING SYSTEM


0+500

CLIENT NAME: SURREY CITY DEVELOPMENT CORPORATION PROJECT LOCATION: SURREY, BC

CROSS SECTION C-C 19525 20th AVE / 19468 24th AVE / 19500 26th AVE &				
2990 194th ST				
dwn by: EB	dwg name: 1286—4	date: 2016-12-21		
снк'д: МР	PLOT:	cadfile: 1286	FIGURE 4	

VERTICAL SCALE 1:200 (EXAGGERATION 10X) ELEVATION (GEODETIC) (m)

GROUND SURFACE - APPROX. DEPTH OF FILL

0+500

CLIENT NAME: SURREY CITY DEVELOPMENT CORPORATION

PROJECT LOCATION: SURREY, BC

19525 20t	CROSS SECTION D-D 19525 20th AVE / 19468 24th AVE / 19500 26th AVE & 2990 194th ST			
DWN BY: EB DWG NAME: 1286-5 DATE: 2016-12-21				
CHK'D: MP PLOT: CADFILE: 1286 FIGURE 5				

Analytical Table Footnotes: Analytical Results for Soil

All concentrations in ug/g, except pH.

- All terms defined within the body of Active Earth's report.
- "<" Result is less than the laboratory detection limit indicated.
- "-" Parameter not analyzed or no standard or guideline applies.
- * RPDs are not normally calculated where one or more concentrations are less than five times MDL.

BC Contaminated Sites Regulation (CSR BC Reg. 375/96 includes amendments up to BC Reg. 4/2014) Generic Numerical Soil
 Standards (Schedules 4 and 10) and Matrix Numerical Soil Standards (Schedule 5), considering the site specific factors of toxicity to soil invertebrates and plants, intake of contaminated soil, groundwater flow to surface water used by Marine Aquatic Life, for Commercial (CL) Land Use. Standards for Residential Land Use (RL) have been included for information purposes.

BC Contaminated Sites Regulation (CSR BC Reg. 375/96 includes amendments up to BC Reg. 4/2014) Standards Triggering
 Contaminated Soil Relocation Agreements (Schedule 7) for Soil Relocation to Non-Agricultural Lands (Column II). If soils exceed these standards, an authorization is required to dispose of these soils (e.g. disposal to a permitted landfill or via a Soil Relocation Agreement).

The standards referenced are for light extractable petroleum hydrocarbons (LEPH) and heavy extractable petroleum
 (3) hydrocarbons (HEPH), which are corrected for polyaromatic hydrocarbons (PAHs). EPH (c 10 - c 19) and EPH (c19 - c32) are uncorrected for PAH.

Associated Lab Files: 16V169396

BOLD, BLUE SHADING	Concentration > CSR RL Standard (Not Applicable to the Site).
BOLD, RED SHADING	Concentration > CSR CL Standard.
BOLD, GREY SHADING	Concentration >CSR SRA Standard.

Table 1: Analytical Results for Hydrocarbons in Soil

		Sam	ple Location		AE16-MW1			AE16-BH1		AE16-MW2			
			Sample ID	AE16-MW1-2	AE16-MW1-3	AE16-MW1-4	AE16-BH1-2	AE16-BH1-4	AE16-BH1-5	AE16-MW2-1	AE16-MW2-2	AE16-MW2-3	AE16-MW2-4
			Depth (m)	0.61	2.1	3.6	2.1	5.2	7	0.9	2.4	3.0	4.0
		Vapour Re	ading (ppm)	70	15	45	60	20	20	0	0	25	60
	Fill/Native			Native	Native	Native	Fill						
	Date Sampled			02-Dec-16									
	CS	SR Standard	s ⁽¹⁾										
	RL ⁽¹⁾	CL ⁽¹⁾	SRA ⁽²⁾										
Extractable Petroleum Hydrocarbons (ug/g)			-										
EPH10-19	1000 ⁽³⁾	2000 ⁽³⁾	1000 ⁽³⁾	<20	-	<20	<20	<20	20	<20	<20	-	68
EPH19-32	1000 ⁽³⁾	5000 ⁽³⁾	1000 ⁽³⁾	<20	-	<20	39	44	132	45	96	-	420
LEPH	1000	2000	1000	<20	-	<20	<20	<20	20	<20	<20	-	68
HEPH	1000	5000	1000	<20	-	<20	38	44	132	45	94	-	420
Volatile Petroleum Hydrocarbons (ug/g)													(
VHs6-10	-	-	-	-	<10	-	-	-	-	-	-	<10	-
VPHs	200	200	200	-	<10	-	-	-	-	-	-	<10	-
Polycyclic Aromatic Hydrocarbons (ug/g)													ſ
Acenaphthene	-	-	-	<0.01	-	<0.01	< 0.01	0.01	<0.01	<0.01	0.03	-	< 0.01
Acenaphthylene	-	-	-	<0.01	-	<0.01	0.01	0.04	<0.01	<0.01	0.07	-	< 0.01
Anthracene	-	-	-	< 0.02	-	< 0.02	0.02	0.06	< 0.02	< 0.02	0.09	-	< 0.02
Benz(a)anthracene	1	10	1	<0.02	-	<0.02	0.12	0.12	<0.02	<0.02	0.38	-	0.05
Benzo(a)pyrene	1	10	1	<0.05	-	<0.05	0.15	0.08	< 0.05	<0.05	0.36	-	0.05
Benzo(b)fluoranthene	1	10	1	<0.02	-	<0.02	0.11	0.06	<0.02	<0.02	0.33	-	0.05
Benzo(g,h,i)perylene	-	-	1	<0.05	-	<0.05	0.1	0.05	< 0.05	<0.05	0.27	-	0.06
Benzo(k)fluoranthene	1	10	-	<0.02	-	<0.02	0.07	0.04	<0.02	<0.02	0.17	-	0.02
Chrysene	-	-	-	<0.05	-	<0.05	0.14	0.14	<0.05	<0.05	0.35	-	0.07
Dibenz(a,h)anthracene	1	10	1	<0.02	-	<0.02	0.03	<0.02	<0.02	<0.02	0.09	-	<0.02
Fluoranthene	-	-	-	<0.05	-	<0.05	0.12	0.24	<0.05	<0.05	0.6	-	0.12
Fluorene	-	-	-	<0.02	-	<0.02	<0.02	0.06	<0.02	<0.02	0.04	-	0.02
Indeno(1,2,3-c,d)pyrene	1	10	1	<0.02	-	<0.02	0.09	0.04	<0.02	<0.02	0.26	-	0.04
Naphthalene	5	50	5	<0.01	-	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	-	0.01
Phenanthrene	5	50	5	<0.02	-	<0.02	0.04	0.32	<0.02	<0.02	0.26	-	0.11
Pyrene	10	100	10	<0.02	-	<0.02	0.19	0.24	0.03	0.03	0.47	-	0.12
Non-Halogenated Volatiles (ug/g)							1	1		1	1		
Benzene	2.5	2.5	0.04	-	< 0.02	-	-	-	-	-	-	< 0.02	-
Toluene	1.5	25	1.5	-	< 0.05	-	-	-	-	-	-	< 0.05	-
Ethylbenzene	1	20	1	-	< 0.05	-	-	-	-	-	-	<0.05	
Total Xylenes	5	50	5	-	<0.2	-	-	-	-	-	-	<0.2	-
Styrene	5	50	5	-	< 0.05	-	-	-	-	-	-	< 0.05	-
MTBE	320	700	-	-	<0.1	-	-	-	-	-	-	<0.1	i -
Notes:	_												

BOLD, BLUE SHADING	Concentration greater than CSR Residential Land Use (RL) Standard (Not Applicable to the Site).
BOLD, RED SHADING	Concentration greater than CSR Commercial Land Use (CL) Standard.
BOLD, GREY SHADING	Concentration greater than CSR Soil Relocation Agreement (SRA) Standard.

		Sam	ple Location		AE16-BH2			AE16-BH3	
			Sample ID	AE16-BH2-3	AE16-BH2-5	AE16-BH2-7	AE16-BH3-1	AE16-BH3-2	AE16-BH3-
			Depth (m)	3.6	5.5	8.2	0.9	2.1	6.7
		Vapour Re	eading (ppm)	65	310	40	380	230	0
			Fill/Native	Fill	Fill	Fill	Fill	Fill	Fill
			ate Sampled	02-Dec-16	02-Dec-16	02-Dec-16	02-Dec-16	02-Dec-16	02-Dec-16
	CS	SR Standards	s ⁽¹⁾						
	RL ⁽¹⁾	CL (1)	SRA ⁽²⁾						
Extractable Petroleum Hydrocarbons (ug/g)									
EPH10-19	1000 ⁽³⁾	2000 ⁽³⁾	1000 ⁽³⁾	70	<20	<20	<20	<20	<20
EPH19-32	1000 ⁽³⁾	5000 ⁽³⁾	1000 ⁽³⁾	668	29	44	96	125	133
LEPH	1000	2000	1000	70	<20	<20	<20	<20	<20
HEPH	1000	5000	1000	667	29	44	95	123	132
Volatile Petroleum Hydrocarbons (ug/g)									
VHs6-10	-	-	-	-	-	-	-	-	-
VPHs	200	200	200	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons (ug/g)									
Acenaphthene	-	-	-	< 0.03	< 0.01	< 0.01	0.01	0.03	0.02
Acenaphthylene	-	-	-	< 0.03	< 0.01	0.04	0.06	0.1	0.05
Anthracene	-	-	-	< 0.06	< 0.02	0.05	0.07	0.15	0.07
Benz(a)anthracene	1	10	1	0.12	<0.02	0.14	0.17	0.35	0.16
Benzo(a)pyrene	1	10	1	<0.2	< 0.05	0.11	0.14	0.3	0.13
Benzo(b)fluoranthene	1	10	1	0.11	<0.02	0.07	0.1	0.23	0.1
Benzo(g,h,i)perylene	-	-	1	<0.2	< 0.05	0.07	0.09	0.2	0.09
Benzo(k)fluoranthene	1	10	-	0.06	<0.02	0.05	0.06	0.13	0.06
Chrysene	-	-	-	<0.2	< 0.05	0.17	0.19	0.36	0.18
Dibenz(a,h)anthracene	1	10	1	<0.06	<0.02	0.02	0.04	0.08	0.03
Fluoranthene	-	-	-	0.2	<0.05	0.22	0.24	0.57	0.25
Fluorene	-	-	-	<0.06	<0.02	0.03	0.02	0.05	0.07
Indeno(1,2,3-c,d)pyrene	1	10	1	0.06	<0.02	0.06	0.09	0.19	0.08
Naphthalene	5	50	5	<0.03	<0.01	0.01	<0.01	0.03	0.11
Phenanthrene	5	50	5	0.16	<0.02	0.22	0.2	0.44	0.31
Pyrene	10	100	10	0.24	<0.02	0.25	0.28	0.56	0.28
Non-Halogenated Volatiles (ug/g)									
Benzene	2.5	2.5	0.04	-	-	-	-	-	-
Toluene	1.5	25	1.5	-	-	-	-	-	-
Ethylbenzene	1	20	1	-	-	-	-	-	-
Total Xylenes	5	50	5	-	-	-	-	-	-
Styrene	5	50	5	-	-	-	-	-	-
MTBE	320	700	-	-	-	-	-	-	-

BOLD, BLUE SHADING	Concentration greater than CSR Residential Land Use (RL) Standard (Not Applicable to the Site).
	Concentration greater than CSR Commercial Land Use (CL) Standard.
	Concentration greater than CSR Soil Relocation Agreement (SRA) Standard.

Table 2 - Analytical Results for Total Metals in Soil

-		Sa	mple Location		AE16-BH1			AE16-BH2			AE16-BH3	
			Sample ID	AE16-BH1-2	AE16-BH1-4	AE16-BH1-5	AE16-BH2-3	AE16-BH2-5	AE16-BH2-7	AE16-BH3-1	AE16-BH3-2	AE16-BH3-5
			Depth (m)	2.1	5.2	7	2.3	5.5	8.2	90	2.1	6.7
			Fill/Native	Fill	Fill	Fill	Fill	Native	Native	Fill	Native	Native
			Date Sampled	02-Dec-16								
		CSR Standards	(1)									
	RL ⁽¹⁾	CL ⁽¹⁾	SRA ⁽²⁾									
Physical Tests												
pĤ	-	-	-	6.65	7.16	6.21	6.1	6.4	6.38	6.53	6.66	6.46
Total Metals (µg/g)												
Antimony (Sb)	20	40	20	0.4	0.7	0.4	0.4	0.3	0.3	0.4	0.3	0.4
Arsenic (As)	25	25	15	5.6	6	5.1	4.6	5.7	5.3	4.3	4.8	4.9
Barium (Ba)	1000	1,500	400	105	96	86.3	97.6	84.9	95.1	68.9	70.4	74.8
Beryllium (Be)	4	8	4	0.3	0.3	0.3	0.2	0.3	0.3	0.2	0.2	0.2
Cadmium (Cd) pH < 7.0	2	2		0.08		0.14	0.21	0.09	0.09	0.13	0.13	0.13
pH 7.0 -< 7.5	3.5	3.5	1.5		0.11							
pH 7.5 -< 8.0	35	35	1.5									
pH >= 8.0	35	100										
Chromium (Total)	60	60	60	38	38	28	15	34	36	26	26	41
Chromium (VI)	60	60	60	-	-	-	-	-	-	-	-	-
Cobalt (Co)	50	300	50	11.4	11	8.6	4.7	9.8	10	7.3	7.5	8.8
Copper (Cu) pH < 5.0	90	90										
pH 5.0 -< 5.5	100	100	90									
pH 5.5 -< 6.0	150	200	90									
pH > = 6.0	150	250		32.6	33.5	18.5	17.2	27.1	27.3	26.6	27.1	31.3
Lead (Pb) pH < 5.5	150	150						•	•		•	
pH 5.5 -< 6.0	250	250	100									
pH 6.0 -< 6.5	400	700	100			12.7	17.8	21.2	12.1			55.2
pH >= 6.5	400	700		12.3	16.3					16.3	12.2	
Mercury (Hg)	15	40	15	0.04	0.05	0.07	0.11	0.04	0.03	0.04	0.03	0.03
Molybdenum (Mo)	10	40	10	0.5	0.6	0.7	2.8	0.7	0.7	1.1	0.9	1.1
Nickel (Ni)	100	500	100	32.3	30.6	21.9	15.1	27.7	30.9	21.5	20.7	27.4
Selenium (Se)	3	10	3	0.4	0.3	0.7	0.7	0.2	0.7	0.3	0.3	0.4
Silver (Ag)	20	40	20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium (TI)	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin (Sn)	50	300	50	0.7	0.6	0.7	0.4	0.4	0.5	0.5	0.5	0.4
				0.5	0.5	0.4	0.3	0.5	0.5	0.5	0.5	0.7
Vanadium (V)	200	-	200	69	65	58	33	63	62	50	50	54
Zinc (Zn) pH < 6.5	150	150			78	80	38	61	58		•	61
pH 6.5 -< 7.0	300	300	150	63						61	57	
pH > = 7.0	450	600	1 1									

Notes:

* Concentration less than Regional Background of 90 ug/g

BOLD, BLUE SHADING	Concentration greater than CSR Residential Land Use (RL) Standard (Not Applicable to the Site).
BOLD, RED SHADING	Concentration greater than CSR Commercial Land Use (CL) Standard.
BOLD, GREY SHADING	Concentration greater than CSR Soil Relocation Agreement (SRA) Standard.

		S	ample Location	AE16-MW1	AE16-MW2
			Sample ID	AE16-MW1-3	AE16-MW2-3
			Depth (m)	2.1	3
		Vapour	Reading (ppm)	15	25
			Fill/Native	Native	Native
			Date Sampled	02-Dec-16	02-Dec-16
		CSR Standards	(1)		
	RL ⁽¹⁾	CL ⁽¹⁾	SRA ⁽²⁾		
Halogenated Volatiles (µg/g)					
Acetone	14000	54000	-	<0.5	<0.5
Bromomethane	3.9	13	-	<0.05	<0.05
Bromodichloromethane	8.2	18	-	<0.05	<0.05
Bromoform	620	2200	-	<0.05	<0.05
Carbon Tetrachloride	5	50	5	<0.05	<0.05
Chlorobenzene	1	10	1	<0.05	<0.05
Dibromochloromethane	11	26	-	<0.05	<0.05
Chloroethane	30	65	-	< 0.05	<0.05
Chloroform	5	50	5	<0.05	< 0.05
Chloromethane	47	160	-	<0.05	<0.05
1,2-Dichlorobenzene	1	10	1	<0.05	< 0.05
1,3-Dichlorobenzene	1	10	1	<0.05	<0.05
1,4-Dichlorobenzene	1	10	1	<0.05	<0.05
1,1-Dichloroethane	5	50	5	< 0.05	< 0.05
1,2-Dichloroethane	5	50	5	<0.05	<0.05
1,1-Dichloroethylene	5	50	5	<0.05	<0.05
cis-1,2-Dichloroethylene	-	-	-	< 0.05	< 0.05
trans-1,2-Dichloroethylene	-	-	-	<0.05	< 0.05
1,2-Dichloroethylene ⁽³⁾	5	50	5	<0.05	<0.05
Dichloromethane	5	50	5	< 0.05	< 0.05
1,2-Dichloropropane	5	50	5	< 0.05	< 0.05
cis-1,3-Dichloropropylene	5	50	5	< 0.05	< 0.05
trans-1,3-Dichloropropylene	5	50	5	< 0.05	< 0.05
1.1.1.2-Tetrachloroethane	32	73	-	< 0.05	< 0.05
1.1.2.2-Tetrachloroethane	4.1	9.3	5	< 0.05	< 0.05
Tetrachloroethylene	5	5	5	< 0.05	< 0.05
1,1,1-Trichloroethane	5	50	5	< 0.05	< 0.05
1,1,2-Trichloroethane	5	50	5	< 0.05	< 0.05
Trichloroethylene	0.65	0.65	0.015	< 0.01	< 0.01
Trichlorofluoromethane	390	2000	-	< 0.05	< 0.05
Vinyl Chloride	0.79	7.5	-	< 0.05	< 0.05
lotes:					
BOLD, BLUE SHADING		ater than CSR Resid t Applicable to the S			
BOLD, RED SHADING	Concentration grea	ater than CSR Com	mercial Land Use		

Table 3 - Analytical Results for Volatile Organic Compounds In Soil

	Concentration greater than CSR Residential Land Use (RL) Standard (Not Applicable to the Site).
BOLD, RED SHADING	Concentration greater than CSR Commercial Land Use (CL) Standard.
	Concentration greater than CSR Soil Relocation Agreement (SRA) Standard.

Analytical Table Footnotes: Analytical Results for Groundwater

All concentrations in μ g/L, except pH, or if noted.

All terms defined within the body of Active Earth's report.

"<" means less than the laboratory detection limit indicated.

- "-" means not analyzed or no standard or guideline applies.
- * means RPD not calculated. RPDs are not normally calculated where one or more concentrations are less than five times MDL.

BC Contaminated Sites Regulation (CSR BC Reg. 375/96 includes amendents up to BC Reg. 4/2014) groundwater standards (Schedule 6) and generic soil and drinking water standards

- (Schedule 10). Applicable standards include those for protection of Freshwater Aquatic Water (AW), protection of groundwater used for Drinking Water (DW), and those apply irrespective of groundwater use.
- (2) Standard applies to all sites irrespective of water use.
- (3) Laboratory Minimum Detection Limit exceeds the applicable CSR DW standard
- (4) CSR Stage 8 Amendments (effective January 24, 2013) indicate that standards for dissolved Iron and Manganese only apply at sites with specified uses listed in Schedule 2 of the CSR.

BOLD, BLUE SHADING	Concentration greater thanthe CSR Drinking Water Standard (DW)
BOLD, RED SHADING	Concentration greater than CSR Freshwater Aquatic Life (FAW) Standard
BOLD, GREEN SHADING	Concentration greater than CSR Irrigation (IW) or Livestock Water use (LW) Standard

Sample Location	0	CSR Standards ⁽	1)	AE16-MW1	AE16-MW
Screened Interval (m)	Freshwater Aquatic Life	Drinking	Irrigation		
Date Sampled	(FAW)	Water (DW)	/ater (DW) Water (IW)		15-Dec-16
Hydrocarbons (μg/L)					
VHw ₆₋₁₀	15000 ⁽²⁾	15000 ⁽²⁾	15000 ⁽²⁾	<100	<100
VPHw	1500	1500	-	<100	<100
EPHw ₁₀₋₁₉	5000 ⁽²⁾	5000 ⁽²⁾	5000 ⁽²⁾	<250	<250
EPHw ₁₉₋₃₂	-	-	-	<250	<250
LEPHw	500			<250	<250
HEPHw	-	-		<250	<250
	-	-	-	~230	~230
Monoaromatic Hydrocarbons (µg/L)					
Benzene	4000	5	-	<0.5	< 0.5
Toluene	390	24	-	< 0.5	< 0.5
Ethylbenzene	2000	2.4	-	< 0.5	< 0.5
Xylenes	-	300	-	< 0.75	< 0.75
Styrene	720	-	-	<0.5	< 0.5
Methyl t-butyl ether (MTBE)	34,000	15	-	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons (µ	,				
Acenaphthene	<u>60</u>	-		<0.050	<0.050
Acenaphthylene	-	-	-	< 0.050	< 0.050
Acridine	0.5	-	-	< 0.050	< 0.050
Anthracene	1	-	-	< 0.050	< 0.050
Benzo(a)anthracene	1	-	-	< 0.050	< 0.050
Benzo(a)pyrene	0.1	0.01	-	< 0.0050	< 0.0050
Benzo(b)fluoranthene	-	-	-	< 0.050	< 0.050
Benzo(g,h,i)perylene	-	-	-	< 0.050	< 0.050
Benzo(k)fluoranthene	-	-	-	< 0.050	< 0.050
Chrysene	1	-	-	< 0.050	< 0.050
Dibenz(a,h)anthracene	-	-	-	< 0.0050	< 0.0050
Fluoranthene	2	-	-	< 0.050	< 0.050
Fluorene	120	-	-	< 0.050	< 0.050
Indeno(1,2,3-cd)pyrene	-	-	-	< 0.050	< 0.050
Naphthalene	10	-	-	< 0.050	< 0.050
Phenanthrene	3	-	-	< 0.050	< 0.050
Pyrene	0.2	-	-	< 0.050	< 0.050
Fylelle					-

Table 4: Analytical Results for Hydrocarbons in Groundwater

BOLD, BLUE SHADING	Concentration greater thanthe CSR Drinking Water Standard (DW)
BOLD, RED SHADING	Concentration greater than CSR Freshwater Aquatic Life (FAW) Standard
BOLD, GREEN SHADING	Concentration greater than CSR Irrigation (IW)

Table 5: Analy	tical Results for Dissolved Metals in Groundwate	r
Tuble V. Allul		•

Sample Location	CSR Standards ⁽¹⁾							
Screened Interval (m)								
Date Sampled	Freshwater Aquatic Life (FAW)	Drinking Water (DW)	Irrigation Water (IW)	15-Dec-16	15-Dec-16			
Physical Tests				00.4	500			
Hardness (as CaCO3)-mg/L -	-	-	-	28.4	500			
Dissolved Metals (µg/L)		0500	5000	-10				
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	-	9500	5000	<10	<10 <0.50			
	200	6	-	< 0.50				
Arsenic (As)-Dissolved	50	10	100	<1.0	135			
Barium (Ba)-Dissolved	10000	1000	-	<20	149			
Beryllium (Be)-Dissolved	53	-	100	<5.0	<5.0			
Boron (B)-Dissolved	50000	5000	500-6000	<100	110			
Cadmium (Cd)-Dissolved H <= 30 H = 30 -< 90	0.1	- 5	5	<0.050	<0.050			
H = 90 -< 150	0.5	v	Ŭ	40.000	10.000			
H = 150 -< 210	0.6							
Calcium (Ca)-Dissolved	-	-	-	7010	141000			
Chromium (Cr)-Dissolved	10 ⁽²⁾	50	8, 5	<0.50	1.13			
Cobalt (Co)-Dissolved	40	-	50	<0.50	81.8			
Copper (Cu)-Dissolved H = < 50	20							
H = 50 - < 75	30							
H = 75 -< 100	40							
H = 100 -< 125	50							
H = 125 -< 150	60	1000	200	<1.0	<1.0			
H = 150 -< 175	70	-						
H = 175 -< 200	80	_						
H = > 200	90	_						
Iron (Fe)-Dissolved ⁽⁴⁾	-	-	5000	<30	111000			
Lead (Pb)-Dissolved $H = < 50$	40	-	5000	-30	111000			
H = 50 -< 100	50	_						
		10	200	<1.0	<1.0			
H = 100 -< 200 H = 200 -< 300	60	10	200	<1.0	<1.0			
	110	_						
H = > 300	160		0500	.50	.50			
Lithium (Li)-Dissolved	-	-	2500	<50	<50			
Magnesium (Mg)-Dissolved	-	100000	-	2640	36000			
Manganese (Mn)-Dissolved ⁽⁴⁾	-	-	200	25	20800			
Mercury (Hg)-Dissolved	1	-	1	<0.20	<0.20			
Molybdenum (Mo)-Dissolved	10000	250	10-30	<1.0	4.1			
Nickel (Ni)-Dissolved H = < 60	250							
H = 60 -< 120	650		200	<5.0	7.8			
H = 120 -< 180	1100		200	-0.0	7.0			
H = > 180	1500							
Potassium (K) - Dissolved	-	-	-	<2000	7600			
Selenium (Se)-Dissolved	10	10	20, 50	<1.0	<1.0			
Silver (Ag)-Dissolved H = < 100	0.5	-	-	<0.050	<0.050			
H = > 100	15	-	-	~0.000	~0.000			
Sodium (Na)-Dissolved	-	200000	-	4500	100000			
Thallium (TI)-Dissolved	3	-	-	<0.20	<0.20			
Titanium (Ti)-Dissolved	1000	-	-	<50	<50			
Uranium (U)-Dissolved	3000	20	10	<0.20	<0.20			
Vanadium (V)-Dissolved	-	-	100	<30	<30			
Zinc (Zn)-Dissolved H = < 90	75							
H = 90 -< 100	150							
H = 100 -< 200	900	5000	1000 - 5000	<5.0	6.9			
H = 200 -< 300	1650							
H = 300 -< 400	2400							

	Concentration greater thanthe CSR Drinking Water Standard (DW)
	Concentration greater than CSR Freshwater Aquatic Life (FAW) Standard
BOLD, GREEN SHADING	Concentration greater than CSR Irrigation (IW)

	1	A	C	tive Earth				A	\E1(6-M		Dage 1 of 1)
	C	amp	bell (es F	g i n e e r i n g L t d Heights Phase 2 Pit, Surrey, BC iject 1286	Date Started : December Date Completed : December Hole Diameter : 152mm		nber 2, 2016 nber 2, 2016 n Stem Auger			Company Rep. Lab Analysis Drilled By Logged By		Page 1 of 1) : JB : *indicates sent for analysis : VanMars Drilling : JB
·	Surf. Elev.	USCS	GRAPHIC	DES	CRIPTION		Lab Analysis	Sample No.	Soil Vapours ppm	Moisture Content %	Monitoring Well AE16-MW1	
		SSN GM GW GW		SILT with SAND, fine to co brown, moderate density, in SAND, medium to coarse loose, moist, no odour/stai SAND, fine grained, grey, (NATIVE) SAND, coarse grained with no odour/staining (NATIVE SAND, fine to coarse grain moderate density, wet at 2 (NATIVE) End of Hole	parse grained and GF moist, no odour/stain grained with GRAVE ning (NATIVE) loose, moist, no odou n GRAVEL, grey, loos E) ned with GRAVEL, gr	ing L, grey, ur/staining se, moist, ey,		1-1 1-2 1-3 1-4	10 70 15 45	Moist		pack of PVC screen

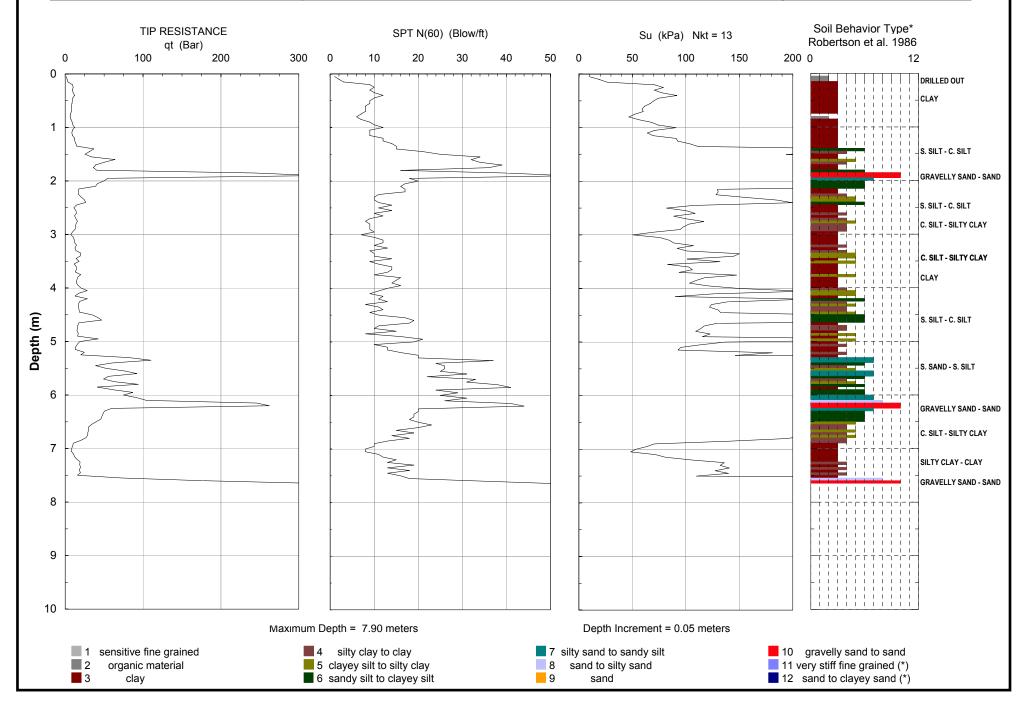
c	amp	bell	tive Earth gineering Ltd Heights Phase 2 Pit, Surrey, BC	Date Started Date Completed Hole Diameter	: Decembe : Decembe : 152mm	r 2, 2016		L	Company Rep. .ab Analysis Drilled By	(Page 1 of 1) : JB : *indicates sent for analys : VanMars Drilling
		Pro	ject 1286	Drilling Method Sampling Method	: Solid Ster : Grab	n Auger		L	.ogged By	: JB
Depth in Meters Elev.	Elev. S LT, SAND, fine to coarse		CRIPTION		Lab Analysis Sample No.	Soil Vapours ppm	Moisture Content %	Monitoring Wel AE16-MW2	Ι	
0	GM		SILT, SAND, fine to coarse moderate density, moist, n	grained and GRAV o odour/staining	EL, brown,	2-1	0	15.8		
2 3 3 4 5 6 7 7 8	ML GM GM GW GM		SILT with ORGANICS, trad density, organic odour, no SILT, SAND, fine to coarse loose, moist, no odour/stain SILT and SAND, some gra loose, no odour/staining SILTY SAND and GRAVEL hydrocarbon odour, no stain SAND, coarse grained and no odour/staining SILTY SAND, fine to coars grey and brown, loose to m hydrocarbon odour, no stain SILTY SAND, fine to coars grey and brown, loose to m hydrocarbon odour, no stain	staining grained and GRAVI ning vel, trace organics, t , grey, moderate de ning from 3.65m to 4 GRAVEL, grey, loos e grained and GRAV noderate density, slig ning e grained and GRAV	EL, grey, prown, nsity, moist, 4.26m se, moist, se, moist, /EL, dark ht	- 2-2 - 2-3 - 2-4 2-4 2-5 - 2-5 - 2-6 - 2-7	0 25 60 20 15	- 23.1 21.5 - 14.1 12.1	ben som	tonite im solid PVC
9 	sw		SAND, coarse grained, trac density, no odour/staining (wet at 10.05m	ce gravel, grey, mod NATIVE) 	erate 	2-8	190	-	sand 10 s	d pack lot PVC screen

	A	C i	tive Earth								(Page 1 of 1)
(Camp	bell (es F	Heights Phase 2 Pit, Surrey, BC oject 1286	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: December : December : 152mm : Solid Stem : Grab	2, 2	2016		L	Company Rep. .ab Analysis Drilled By .ogged By	: JB : *indicates sent for analys : VanMars Drilling : JB
Surf.	nscs	GRAPHIC	DESC	CRIPTION		Lab Analysis		Soil Vapours ppm	Moisture Content %		
0	ML		SILT, some sand, trace gra odour/staining	wel, tan, very dense	e, moist, no		1-1	0	27.8		
2	SM GM	ant son an an an an a Metalenation Metalenation Metalenation	SILTY SAND, some gravel no odour/staining SILTY, SAND and GRAVE moderate density, moist, no	L, grey with greenis			1-2	60	19.4		
3-	sw	antia Antia Antia Antia Antia	SAND, fine to coarse grain loose, damp, no odour/stai	ed with ORGANICS ning	, black,		1.0				
4	GM		SILTY SAND and GRAVEL moderate density, moist, n	., trace organics, gr o odour/staining	ey,		1-3	0	-		
5 - - - - 6 -			black odourless staining fro	om 4.87m to 5.18m			1-4	20	16.4		
7	ML		SILT with ORGANICS (woo density, moist to wet, organ	od chips), brown, mo nic odour, no stainin	oderate g		1-5	20	51.0		
	GW		SAND and GRAVEL, well (graded, grey, loose,	moist		1-6	0	-		
0	ML		SILT, some sand, trace gra wet, no odour/staining wet at 9.75m	ivel, grey, moderate — — — — —	density, 						
- - 1- - - -	CL		CLAY, low plasticity				1-7	15	26.7		
2	SW		SAND, coarse grained, gre \(NATIVE) End of Hole	y, loose, wet, no od	our/staining						

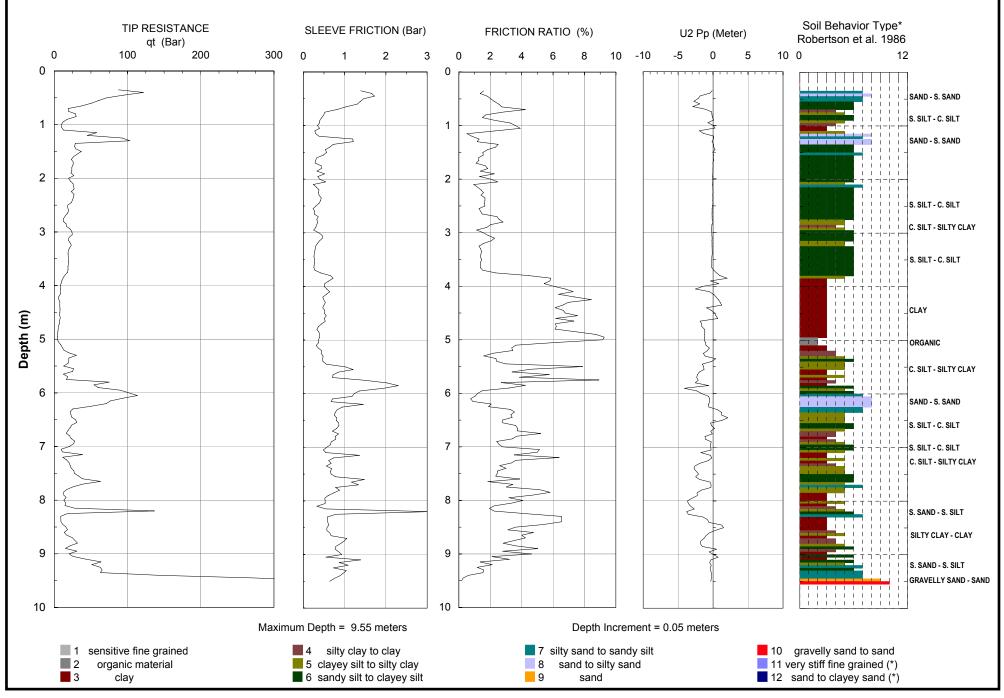

K		1	A	C	tive Earth				,	AE1	6-B	H2	(Pag	je 1 of 1)
		•	amp	bell kes l	Heights Phase 2 Pit, Surrey, BC oject 1286	Date Started : December 2, 2016 Date Completed : December 2, 2016 Hole Diameter : 152mm Drilling Method : Solid Stem Auger Sampling Method : Grab		Company Rep. Lab Analysis Drilled By Logged By			: J : * : \	: JB : *indicates sent for analysi : VanMars Drilling : JB		
Depth in Meters		Surf. Elev.	USCS	GRAPHIC	DES	CRIPTION		Lab Analvsis	Sample No.	Soil Vapours ppm	Moisture Content %			
	0		SM		SILTY SAND, some gravel moderate density, no odou	, trace organics, brov r/staining	wn,		2-1	10	9.3			
	- 3- - - 4-		ML		SILT with ORGANICS, dar organic odour, no staining	k brown, loose, wet a	at 3.65m,		2-2 2-3	10 65	- 135.6			
	- - - - - - - - - - - - - - - - - - -		CL		CLAY, blueish-grey, model odour/staining from 4.26m	rate density, moist, n to 4.57m	o		2-4	310	98.0			
	- 7- - - 8-	-	ML		SILT and SAND, trace grav density, no odour/staining	/el, blueish-grey, mo	derate		2-6	40	-			
	9		GW		SAND, coarse grained with density, no odour/staining	GRAVEL, grey, mo NATIVE)	derate		2-7 2-8	40	-			
1 ²	-				End of Hole									

12-20-2016 C:\Users\Admin\Dropbox (Active Earth)\Enviro Projects\1286 - SCDC - Campbell Heights Phase 2\Logs\2BH-m.bor

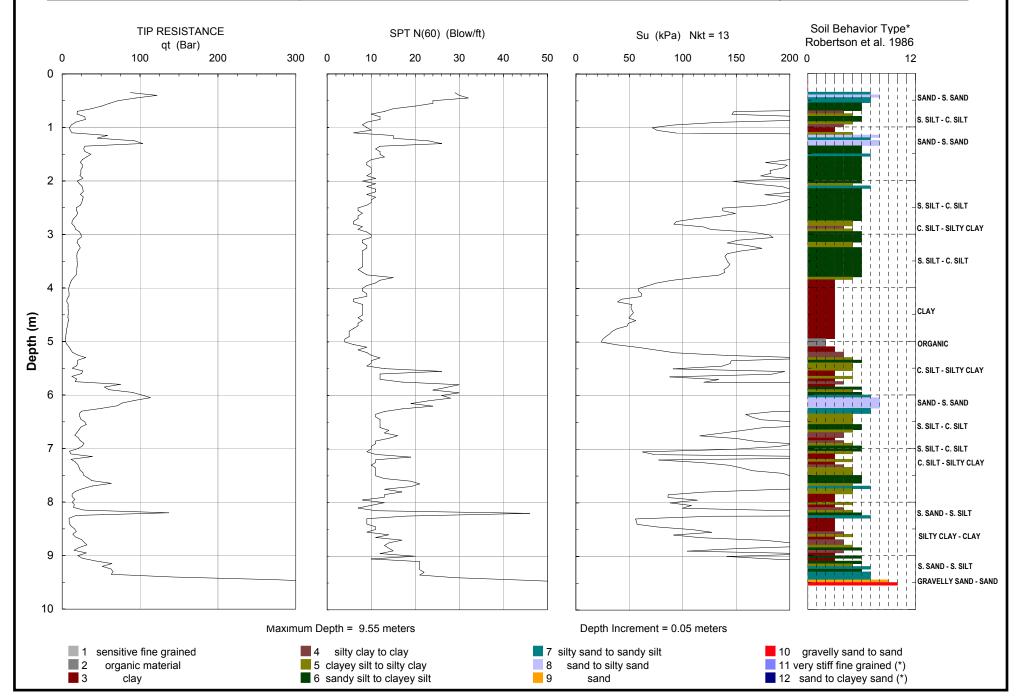
	Camp	ctive Earth Engineering Ltd bell Heights Phase 2 kes Pit, Surrey, BC	Date Started Date Completed Hole Diameter	: December 2, 2 : December 2, 2 : 152mm			La	ompany Rep. b Analysis illed By	(Page 1 of 1) : JB : *indicates sent for and : VanMars Drilling
		Project 1286	Drilling Method Sampling Method	: Solid Stem Au : Grab	ger	1		gged By	: JB
Depth in Meters		ORAPHIC DES	SCRIPTION	Lab Analysis	Sample No.	Soil Vapours ppm	Moisture Content %		
0	sw				3-1	380	19.2		
2-	GW	SILTY SAND, some grave		_	3-2	230	28.4		
3	SM				3-3	0	16.5		
5	ML	SILT, some sand, trace o moderate density			3-4	30	27.1		
6 - - 7 - - -	ML SW	SAND, fine to coarse grai wet, no odour/staining (N	ned, trace gravel, gre		3-5 3-6	0 0	21.5 -		
8		iron staining from 8.22m t	o 9.14m						
3 		End of Hole				L			


Operator: Schwartz Soil Technical Sounding: CPT16 - 01 Cone ID: DPG0236 Date: December 3, 2016 Site: SCDC Campbell Heights Phase 2 Active Earth project no: 1286 Schwartz

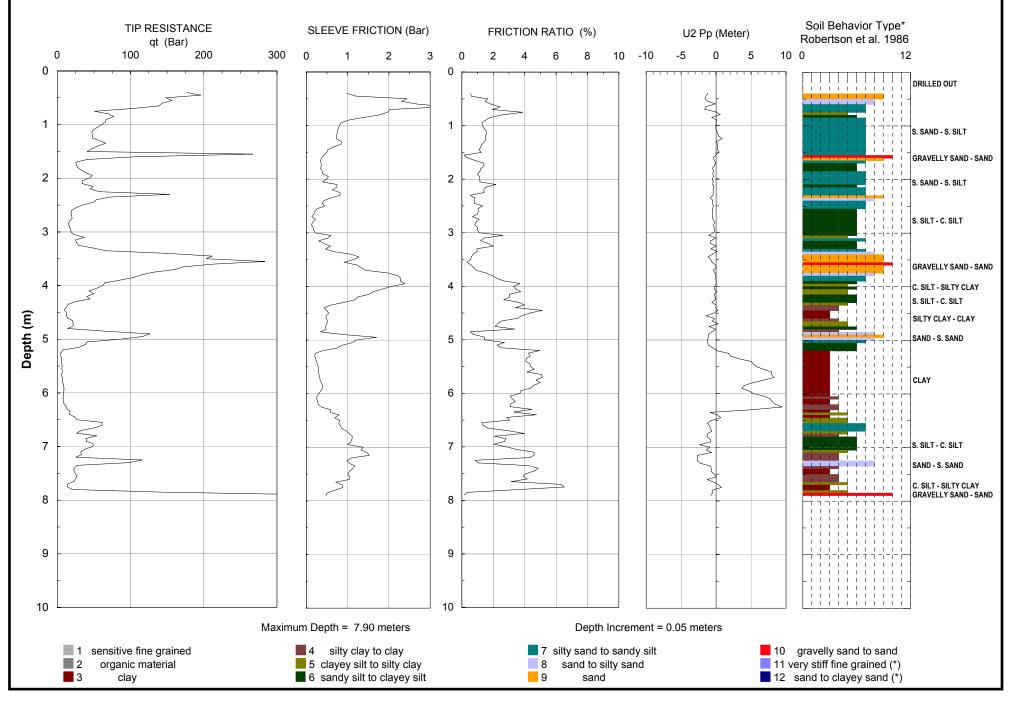
Operator: Schwartz Soil Technical Sounding: CPT16 - 01 Cone ID: DPG0236 Date: December 3, 2016 Site: SCDC Campbell Heights Phase 2 Active Earth project no: 1286



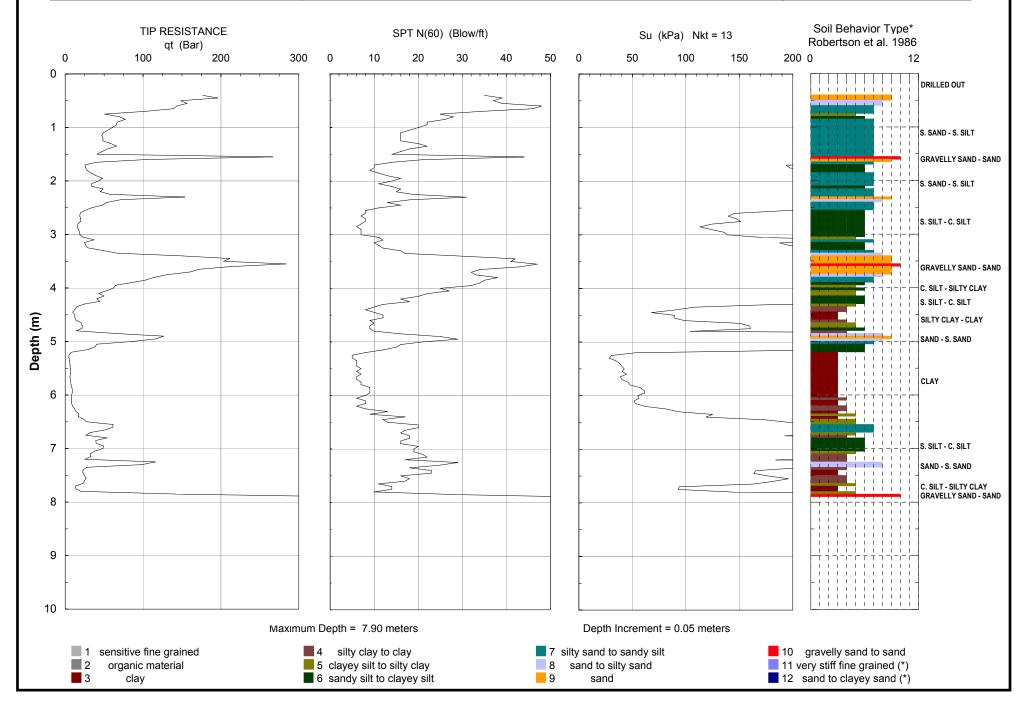
Operator: Schwartz Soil Technical Sounding: CPT16 - 02 Cone ID: DPG0236 Date: December 3, 2016 Site: SCDC Campbell Heights Phase 2 Active Earth project no: 1286


Schwartz

Operator: Schwartz Soil Technical Sounding: CPT16 - 02 Cone ID: DPG0236 Date: December 3, 2016 Site: SCDC Campbell Heights Phase 2 Active Earth project no: 1286



Operator: Schwartz Soil Technical Sounding: CPT16 - 03 Cone ID: DPG0236 Date: December 3, 2016 Site: SCDC Campbell Heights Phase 2 Active Earth project no: 1286


Schwartz

Operator: Schwartz Soil Technical Sounding: CPT16 - 03 Cone ID: DPG0236 Date: December 3, 2016 Site: SCDC Campbell Heights Phase 2 Active Earth project no: 1286

VALLEY TESTING AND ENGINEERING

MOISTURE CONTENT

18 - 3275 McCallum Rd, Abbotsford, BC V2S 7W8

CLIENT: ACTIVE EARTH		TEST NO. 1		PROJECT NO:	V-8309
PROJECT:		DATE SAMPLED:	5-Dec-16	SAMPLED BY:	CLIENT
PROJECT CONTACT: MATT PYE		DATE TESTED:	6-Dec-16	TESTED BY:	VG
Bore Hole No.	*AE16-MW2-1	AE16-MW2-3	AE16-MW2-4	AE16-MW2-6	AE16-MW2-7
Depth (ft)	3	12	14	21	26
Tare No.	F	G	Н	I	J
Wt Wet Sample + Tare	401.23	391.3	406.36	396.03	398.94
Wt Dry Sample + Tare	348.71	320.81	337.4	349.03	357.66
Wt Water	52.52	70.49	68.96	47.00	41.28
Wt Tare	16.0	16.0	16.0	16.0	15.9
Wt Dry Sample	332.7	304.8	321.5	333.1	341.7
Moisture Content (%)	15.8	23.1	21.5	14.1	12.1
Bore Hole No.	AE16-BH1-1	AE16-BH1-2	AE16-BH1-4	AE16-BH1-5	AE16-BH1-7
Depth	3	7	17	23	33
Tare No.	А	В	Q	R	S
Wt Wet Sample + Tare	401.03	404.22	392.16	384.97	395.26
Wt Dry Sample + Tare	317.24	341.19	339.26	260.29	315.39
Wt Water	83.79	63.03	52.9	124.68	79.87
Wt Tare	16.0	15.9	15.9	16.0	16.0
Wt Dry Sample	301.2	325.3	323.4	244.3	299.4
Moisture Content (%)	27.8	19.4	16.4	51.0	26.7
Bore Hole No.	AE16-BH2-1	AE16-BH2-3	AE16-BH2-4	AE16-BH2-5	AE16-BH2-7
Depth	3	14	13	18	27
Tare No.	С	D	E	Т	U
Wt Wet Sample + Tare	409.11	351.2	339.39	384.52	395.67
Wt Dry Sample + Tare	375.77	158.18	179.35	327.45	335.47
Wt Water	33.34	193.02	160.04	57.07	60.2
Wt Tare	15.9	15.8	16.0	15.9	15.9
Wt Dry Sample	359.9	142.4	163.4	311.5	319.6
Moisture Content (%)	9.3	135.6	98.0	18.3	18.8
Bore Hole No.	AE16-BH3-1	AE16-BH3-2	AE16-BH3-3	AE16-BH3-4	AE16-BH3-5
Depth	3	7	13	17	22
Tare No.	К	L	М	N	0
Wt Wet Sample + Tare	404.21	405.8	401.61	403.11	408.48
Wt Dry Sample + Tare	341.76	319.6	347	320.65	339.12
Wt Water	62.45	86.2	54.61	82.46	69.36
Wt Tare	16.0	15.8	16.0	15.9	15.9
Wt Dry Sample	325.8	303.8	331.0	304.8	323.2
Moisture Content (%)	19.2	28.4	16.5	27.1	21.5

CLIENT	ACTIVE EARTH E 4510 SADDLEHO LANGLEY, BC V2Z IJ6	ENGINEERING LTD RN CRESCENT			OUR JOB YOUR JOE REPORT E TESTED B	NO: DATE:	V8309 14-Dec-16 JR
ATTENTION PROJECT:	DAVID KNEALE, ATTERBERG & I						
SAMPLE DES SAMPLE I.D.: SAMPLE LOC SAMPLE TYPI		AE16-MW2-7			SAMPLE R	ECEIVED:	5-Dec-16
NUMBER OF I % MOISTURE	CONTÉNT, W _N	1 27 24.0	2 24 24.2		3 16 24.7	25 24.0	
	N FACTOR, K at D LIQUID LIMIT = K	25.0 (W _N) =	1.000 24.0				
RESULT SUM	BLOW	DW CURVE	100	50 40 30 20 10 10 10 10 0		PLASTICIT CL CL 20 30 40 LIQ	CH MH OM OL
PLASTIC LIMIT	AS IS MOISTURE	LIQUID LIMIT	PLASTICIT INDEX	Y			CLASSIFICATION
17.4	12.1%	24.0	6.6				Plasticity SILT STM D-4318)

Per:

Jaime Rivero Laboratory Supervisor

Reviewed By: Jim Hernandez, AScT

CLIENT	4510 SADDLEHORN CRESCENT LANGLEY, BC V2Z IJ6			OUR JOB N YOUR JOB REPORT D TESTED BY	NO: ATE:	V8309 14-Dec-16 JR
ATTENTION PROJECT:	DAVID KNEALE, ATTERBERG & M					
SAMPLE DES	CRIPTION					ED 40
SAMPLE I.D.: SAMPLE LOC SAMPLE TYPE	<u>=:</u>	AE16-BH1-5		SAMPLE RI	ECEIVED:	5-Dec-16
NUMBER OF E	DINTS BLOWS, N CONTENT, W _N	1 28 32.2	2 21 35.4	3 15 39.7	25 33.5	
	I FACTOR, K at	25.0	1.000			
	LIQUID LIMIT = K		33.5			
					PLASTICIT	У СНАРТ
MOISTURE CONTENT, % MOISTURE CONTENT, % 1 1 1		DW CURVE		50 40 30 20 10 0 10 0 10 2 10 0 10 2 10 0 10 2 10 0 10 2 10 10 2 10 10 10 10 10 10 10 10 10 10	CL (CL) (ML) (0 30 40	CH MH OM OL
RESULT SUM	MARY					
PLASTIC LIMIT	AS IS MOISTURE	LIQUID LIMIT	PLASTICITY INDEX		SOILC	CLASSIFICATION
32.6	51.0%	33.5	0.9			asticity Organic STM D-4318)

Per:

Jaime Rivero Laboratory Supervisor

Reviewed By: M Jim Hernandez, AScT

CLIENT	ACTIVE EARTH E 4510 SADDLEHOI LANGLEY, BC V2Z IJ6	ENGINEERING LTD RN CRESCENT		OUR JOB YOUR JOE REPORT E TESTED B	NO: DATE:	V8309 14-Dec-16 JR
ATTENTION PROJECT:	DAVID KNEALE, ATTERBERG & M					
SAMPLE DES SAMPLE I.D.: SAMPLE LOC SAMPLE TYPE		AE16-BH1-7		SAMPLE R	ECEIVED:	5-Dec-16
NUMBER OF E	DINTS BLOWS, N CONTENT, W _N	1 34 37.8	2 25 39.2	3 13 42.0	25 39.2	
	I FACTOR, K at LIQUID LIMIT = K	25.0 (W _N) =	1.000 39.2			
WOISTURE CONTENT		DW CURVE		50 40 30 20 10 0 0 0 10	PLASTICIT CL ML 20 30 40 LIQ	CH MH OM OL
PLASTIC LIMIT	AS IS MOISTURE	LIQUID LIMIT	PLASTICITY INDEX		SOIL C	CLASSIFICATION
23.3	26.7%	39.2	15.9			Plasticity CLAY STM D-4318)

Per:

Jaime Rivero Laboratory Supervisor

Reviewed By: M Jim Hernandez, AScT

						STM D-4318)
14.8	18.8%	21.9	7.1		Low Plas	sticity CLAY/SILT
PLASTIC LIMIT	AS IS MOISTURE	LIQUID LIMIT	PLASTICITY INDEX		SOILC	CLASSIFICATION
RESULT SUM	MARY					
	BLOW				LIQ	
≥ 1	BLOW	10 COUNT, N	100	0 10	20 30 40	50 60 70 80 90 100
				0		OL
			STICI	10		MH OM
Woisture Content, 23 Moisture Content, 1 1			PLASTICITY INDEX	20	CL	
ENT –			HH ×	30		
* 23			ттп 📗	40		СН
	FLC	OW CURVE		50	PLASTICIT	Y CHART
CALCULATED) LIQUID LIMIT = K	(W _N) =	21.9	•	•	
CORRECTION	I FACTOR, K at	25.0	1.000			
6 MOISTURE	CONTENT, W _N	21.7	22.5	22.7	21.9	
NUMBER OF	BLOWS, N	1 27	2 18	3 16	25	
D	OINTS	4	2	2		1
SAMPLE TYPE	=:					
SAMPLE LOC						
SAMPLE DES SAMPLE I.D.:	CRIPTION	AE16-BH2-7		SAMPLE	RECEIVED:	5-Dec-16
ATTENTION PROJECT:	DAVID KNEALE, ATTERBERG & M					
		R 050		TEOTED		
	LANGLEY, BC V2Z IJ6			REPORT TESTED		14-Dec-16 JR
CLIENT	4510 SADDLEHORN CF			our Joe Your Jo		V8309

Per:

Jaime Rivero Laboratory Supervisor

Reviewed By: M Jim Hernandez, AScT

CLIENT	ACTIVE EARTH E 4510 SADDLEHO LANGLEY, BC V2Z IJ6	ENGINEERING LTD RN CRESCENT		OUR JOB NO: YOUR JOB NO: REPORT DATE: TESTED BY			V8309 14-Dec-16 JR		
ATTENTION PROJECT:	DAVID KNEALE, ATTERBERG & M								
SAMPLE DES SAMPLE I.D.: SAMPLE LOC SAMPLE TYPE		AE16-BH3-4		SAM	IPLE RE	CEIVED:	5-Dec-16		
NUMBER OF E	DINTS BLOWS, N CONTENT, W _N	1 20 27.4	2 15 28.4		3 12 25 29.2 26.0				
	I FACTOR, K at LIQUID LIMIT = K	25.0 (W _N) =	1.000 26.0						
³⁰ 28 28 26 26 24 1 RESULT SUM	BLOW	DW CURVE		50 40 30 20 10 10 10 10 10 10 10 10 10 10 10 10 10	10 20	30 40	CH MH OM OL		
PLASTIC LIMIT	AS IS MOISTURE	LIQUID LIMIT	PLASTICITY			SOIL C	CLASSIFICATION		
22.3	22.3 27.1% 26.0				Low Plasticity SILT (ASTM D-4318)				

Per:

Jaime Rivero Laboratory Supervisor

Reviewed By: M Jim Hernandez, AScT

CLIENT:	 VALLEY TESTING AND ENGINEERING 18. 3275 McCALLUM RD, ABBOTSFORD, BC V25 7W8 Tel.: (604) 855-9733 Fax.: (604) 855-7378 T: ACTIVE EARTH ENGINEERING LTD 4510 SADDLEHORN CRESCENT LANGLEY, BC V2Z IJ6 											V8309 5-Dec-16 14-Dec-16 AE16-BH1- 4	L			
ATTENTION: PROJECT:	DAVI	D KNE	EALE, P.º E DISTR	GEO IBUTION												
GRADATION: SIEVE				۲												
; ; ; ; ;	3" 1" 3/4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	75 25 19.5 12.5 9.5 4.75 2 0.85 425 0.25 0.15 750 559 407 338 296 245 158 116 084 061 044 030	%PASS 100.0 100.0 97.8 96.4 88.2 72.5 65.9 56.8 47.8 40.3 33.9 30.5 28.3 26.8 26.1 24.7 20.3 19.6 17.4 14.5 11.6 10.2	L' I'S	100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0					AST Gradation - S	M D 422 ieve & Hydron					
	0.0 0.0	024 010	09.4 02.9	CLAY	00.0 1	100	10)		1	(mm)	0.1		0.01		0.001
SPECIFIC GRAVITY AS IS MOISTURE C				Colloids = 2.65 g/cm3	(assume	ed)										
Materials	Cobb	oles	Gravel	Coarse S	Sand	Med. Sand	Fine Sand	Silt	Clay an	d Colloids	Totals					
Composition,%	0.0		11.8	15.7		15.7	26.3	20.3		0.2	100.0					
Tested	Jaime	e Rive Superv							Reviewe	d By:	Jim Herna Lab Mana					

CLIENT:											MPLED: STED: D	V8309 5-Dec-16 14-Dec-16 AE16-BH2-7				
ATTENTION: PROJECT:			IEALE, P. ZE DISTR	geo Ribution												
GRADATION: SIEVE				۲												
SIEVE	3" 1" 3/4 1/2 3/8 #4	SIZE(mm) 75 25 19.5 12.5 9.5 4.75	100.0 100.0 100.0 100.0 95.4 87.0	GRAVEL	100.0 90.0		••••				TM D 422 Sieve & Hydro					
	#10 #20 #40 #60 #100 #200	2 0.85 0.425 0.25 0.0750 0.0586 0.0434 0.0356 0.0311 0.0258 0.0162 0.0119 0.0086 0.0062 0.0045 0.0031 0.0025 0.0010	72.7 65.3 51.7 40.1 33.0 27.6 26.9 23.3 22.5 22.2 20.4 18.5 17.4 14.5 12.4 10.2 08.7 08.0 05.1	Saud Sub Colloids	80.0 70.0 50.0 50.0 40.0 30.0 20.0 10.0 00.0 1					1	\$ize (mm)	0.1	0.0		0.0	01
SPECIFIC GRAVIT				= 2.65 g/cm3	(assume	ed)										
Materials	C	Cobbles	Gravel	Coarse S	Sand	Med. Sand	Fine Sand	Silt	Clay a	nd Colloids	5 Totals]				
Composition,%	,	0.0	13.0	14.3	5	21.0	24.8	18.2		8.7	100.0			 		
Teste	J	daime Rive ab Super							Reviewe	ed By:	Jim Herna Lab Mana					

CLIENT:	4510 SADDLEHORN CRESCENT LANGLEY, BC V2Z IJ6											V8309 5-Dec-16 14-Dec-16 AE16-BH3-4			
ATTENTION: PROJECT:			EALE, P.º 2E DISTR	GEO IBUTION											
GRADATION: SIEVE				2									 	 	
SIEVE	3" 1"	75 25 19.5 12.5 9.5	%PASS 100.0 100.0 100.0 100.0 97.0	GRAVEL	100.0		••••		0		TM D 422 Sieve & Hydro				
#	#4 #10 #20 #40 (0 #60 200 0. 200 0. 200 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	4.75 2 0.85 0.425 0.25 0.15 0750 0586 0434 0359 0316 0263 0166 0124 0090 0064 0046 0032 0025 0010	85.3 83.0 74.1 63.6 51.8 42.3 33.6 30.7 26.6 24.9 23.2 21.6 17.4 14.9 12.5 10.0 07.5 05.4 05.0 03.3	SAND CLAY Colocita	90.0 80.0 70.0 50.0 900 50.0 30.0 20.0 10.0 00.0					1	\$ize (mm)	0.1	0.01	0.00	, 01
SPECIFIC GRAVITY			SING #10 =	2.65 g/cm	3 (assume	ea)								 	
Materials Composition,%		obles).0	Gravel 14.7	Coarse 2.3		Med. Sand 19.4	Fine Sand 32.9	Silt 25.3		I Colloids	Totals				
Tested	By Jain	ne Rive Super	b		·	10.7	02.0	20.0	Reviewed		Jim Herna Lab Mana		 	 	

CLIENT:	4 4 L	18 - 3275 Mc Tel.: (604) ACTIVE E 510 SAD ANGLEY /2Z IJ6	callum rd, ae 855-9733 ARTH EN DLEHOR , BC	ND ENGINE BOTSFORD, BC V25 7V Fax.: (604) 855-7378 IGINEERING N CRESCENT	N8 LTD	FILE NO: DATE: DATE SAM DATE TES SAMPLE ID	PLED: TED:	V8309 5-Dec-16 14-Dec-16 AE16-MW2-7	
ATTENTION: PROJECT:			IEALE, P. ZE DISTR	GEO IBUTION					
GRADATION:				<u>۲</u>					
SIEVE	3" 1" 3/4 1/2	SIZE(mm) 75 25 19.5 12.5	*PASS 100.0 100.0 93.2 87.6	B B B B B B B B B B B B B B B B B B B	00.0		ASTM Gradation - Sie	/I D 422 eve & Hydrom	meter
	3/8 #4 #10 #20	9.5 4.75 2 0.85	76.3 61.9 52.4 44.2		30.0				
#	#20 #40 #60 100 200	0.425 0.25 0.15 0.0750	35.1 29.0 24.2 19.0	Percentage Passing	70.0				
		0.0601 0.0436 0.0363 0.0316 0.0260	17.8 16.3 15.2 14.7 14.2	Percentag	40.0			•	
		0.0162 0.0121 0.0087 0.0062	13.1 11.5 10.0 08.9	S	20.0				
		0.0045 0.0031 0.0025 0.0010	07.3 06.3 05.8 04.7		10.0 00.0 100	10	1	\$ize (mm)	0.1 0.01 0.001
SPECIFIC GRAVITY AS IS MOISTURE C			SING #10 =	Colloids = 2.65 g/cm3 (as	sumed)				
Materials		Cobbles		Coarse San			Clay and Colloids	Totals	
Composition,%		0.0	38.1	9.5	17.3 17	.3 11.5	6.3	100.0	
Tested	<u> </u>	laime Rive .ab Super						Jim Hernar Lab Manag	