Ecosystem Vulnerability Workshop

Surrey City Hall 13450 104 Avenue First Floor - Committee Rooms A & B

Tuesday, November 27, 2018 9:00 AM - 12:00 PM

This workshop will convene Boundary Bay environmental partners, agency representatives and subject matter experts to provide an update on Surrey's Coastal Flood Adaptation Strategy (CFAS), and gather feedback on a framework for ecosystem risk assessment to prioritize issues for near term adaptation and communications materials.

Agenda

 Introductions (10 min) Background to CFAS (10 min) Data collected/collated (30 min) Ecosystem Risk Framework (10 min) Table Exercises (30 min) Break (15 min) Plenary discussion (20 min) Communication work plan (20 min) Conclusion (15 min)

SURREY COASTAL FLOOD ADAPTATION STRATEGY (CFAS)

CFAS

November 27, 2018 Update

SURREY COASTAL FLOOD ADAPTATION STRATEGY (CFAS)

- Mayor & Council adopted recommendations to develop a Coastal Strategy Feb 22, 2016 under Corporate Report No. R034;2016
 - Continuing commitment to participatory planning
- CFAS anticipated to be complete by end of 2018
- Large study area with many communities, stakeholders and partners

Study area @ a glance

COMMUNITIES AND PEOPLE

Many residential areas and neighbourhoods Semiahmoo First Nation 1,500+ residents Approximately 20% of Surrey's land area

PARKS AND ENVIRONMENT

Destination regional and City parks Beaches and recreation areas Critical foreshore, coastal, and riparian areas

LOCAL AND REGIONAL ECONOMY

700+ jobs Over \$100M in annual farm gate revenue Over \$1B in assessed property value Almost \$25B annual truck and rail freight traffic

INFRASTRUCTURE

Over 10km of Provincial Highways Over 200,000 vehicle trips a day Over 30km of railway (freight, passenger)

What is at Risk?

COASTAL AND RIVER FLOODING

1870 1880 1890 1900 1910 1920 1930 1940 2090 2100 2100 1950 1960 2060 2080 1980 1990 2000 2010 2020 2030 2040 2050 2070 Major Coastal and River Flood Events

A Changing Shoreline

In 1890, dyking of Mud Bay begins. Shortly afterwards, dyking and damming of the Serpentine and Nicomekl Rivers begins. By 1953, a timber sea wall at Crescent Beach is constructed.

Since then, residents of Surrey's Coastal Floodplain have relied on a system of dykes and sea dams to protect themselves from ocean and river flooding.

Sea Level Rise

An Evolving Future

TODAY

Sea Level Rise with Ground Subsidence

As our climate continues to change and sea levels continue to rise over the coming years, it is anticipated that the frequency and intensity of major coastal and river floods will also increase.

1.2 Metres

Me

The Province has directed municipalities to plan for at least 1m sea level rise by 2100. In Surrey, and elsewhere in the Lower Mainland, most drainage systems are not designed for projected changes.

Approximate sea level rise since 1972

New Orleans: 36cm

Coastal Vulnerabilities

Coastal Dyke Vulnerability

	Annual Exceedence Probability		
Location	Present	Future with 10 cm of sea level rise	
BNSF Railway	14%	33%	
Colebrook Dyke (Average of two locations)	5%	11% funding requested to bring to 0.5%	
South Bank Serpentine River (Mud Bay)	4%	9%	
Crescent Beach	3%	9%	

Surrey CFAS Process

- Many stakeholders
 - Farmers and agricultural community
 - Residents, businesses, community groups
 - Environmental and recreational groups
 - Infrastructure operators and owners
 - Semiahmoo First Nation

DMAF Framework

Mud Bay Ecosystem and Infrastructure Prioritization project

- Commenced August 2017
- Literature Review
- Online materials
- High Level Environmental Assessment & Risk Assessment
- Estuary monitoring
 - Wind and wave data
 - 4 sites for accretion\erosion and subsidence measurements
 - Water quality and water salinity
 - Remote Sensing (mapping, video collection)
- Completion deadline August 2019

Conservation Context

The 200,000 hectare Delta is the most-used migratory staging area in BC.

Largest estuary in BC (45% of BC mudflats)

Supports the highest density of wintering waterfowl in Canada.

Mostly used by wintering and migrating waterfowl (33 species; 90 million waterfowl use days) and these birds use the FD mostly for food supply and refuge.

Current Wetlands in the Fraser Lowland

• Adapted from Boyle et al. 1997 (early 1800's)

Historic Wetlands in the Fraser Lowland

Regional Significance

Shoreline Classification	Mud Bay Total Length (m)	Relative to Boundary Bay	Relative to Lower Mainland	Relative to Province
Estuary (Organics/Fines)	11,137	44%	16%	<1%
Sand Beach, wide > 30m	2,326	23%	18%	<1%
Total	13,463	28%	3%	<0.1%
Shoreline Classification	Bounda	ry Bay Total Length (m)	Relative to Lower Mainland	Relative to Province
Estuary (Organics/Fines)		25,509	37%	1.4%
Sand Beach, wide > 30m		10,215	79%	2.6%
Other		13,115	<1%	<0.1%
Total		48,839	13%	4.8%
Shoreline Classification	Lower Ma	inland Total Length (m)	Relative to	Province
Estuary (Organics/Fines)		68,619		3.8%
Sand Beach, wide > 30m		15,586		3.3%
Other		303,459		<1%
Total		387,664		1.1%

Source: Archipelago Marine Research, 2015. Note: Mapping excludes Nicomekl River and Serpentine River East of Hwy 99

Literature Review

- > 77 pieces of literature reviewed and cited for Mud Bay
- Hydrology, sediment, vegetation, biofilm, invertebrates, fish, birds
- Spreadsheet of all articles and their relevance to CFAS

Songbirds	American Goldfinch American Robin Barn Swallow Violet Green Swallow White crowned sparrow	Shorebirds	Greater Yellowlegs Killdeer Western Sandpiper Western Grebe Whimbrel
Waterfowl	Mallard Northern Pintail Green-winged teal American Wigeon Snowgoose	Raptors	Bald Eagle Northern Harrier Red-tailed hawk Peregrin Falcon Rough legged hawk

Invasive Spartina

Year: 2004

- Zostera marina shoot density (Shoots/m2) at Crescent Beach is double that of Mud Bay
- Increased nutrient loading causes a decline in seagrass shoot density, increase in macroalgal species, and increase in detrital material. These patterns are stronger at Crescent Beach than Mud Bay which suggests that Mud Bay is already highly enriched. Nutrient concentration in the water column and shifts in invertebrate diversity/feeding groups is forthcoming.

Mapping

Experimental variogram and fitted variogram model

Lowest Medium Highest

Seasonal Site Boundaries (220ha)

Mapped Area (409ha)

Geomorphology Review and Shoreline Classification

Ilana Klinghoffer | Geomorphologist Northwest Hydraulic Consultants
13,000 years before present

GLACIER ICE
WATER
LAND

FLUVIAL, GLACIOFLUVIAL, AND ORGANIC DEPOSITS H - HANEY L - LADNER MC - MISSION CITY NW - NEW WESTMINSTER PL - PITT LAKE V - VANCOUVER WR - WHITE ROCK 20 km

11,300 years before present

	GLACIER ICE	
	WATER	
	LAND	
······		•

RGANIC DEPOSITS

H - HANEY L - LADNER MC - MISSION CITY NW - NEW WESTMINSTER PL - PITT LAKE V - VANCOUVER WR - WHITE ROCK

OFLUVIAL, AND

20 km

10,500 years before present

Crescent

Beach

GLACIER ICE
WATER
LAND

Sea Level Falls

FLUVIAL, GLACIOFLUVIAL, AND ORGANIC DEPOSITS H - HANEY L - LADNER MC - MISSION CITY NW - NEW WESTMINSTER PL - PITT LAKE V - VANCOUVER WR - WHITE ROCK 20 km

Fraser River no longer flows to Boundary Bay

After Clague et al. 1983

10,000 years before present

GLACIER ICE
WATER
LAND

- HANEY - LADNER - MISSION CITY MC NEW WESTMINSTER PL PITT LAKE - VANCOUVER v - WHITE ROCK WR

20 km

5,000 years before present

Richmond

becomes Dry

1 + + + + + + + + + + + + + + + + + + +	GLACIER ICE
	WATER
	LAND

FLUVIAL, GLACIOFLUVIAL, AND ORGANIC DEPOSITS H - HANEY L - LADNER MC - MISSION CITY NW - NEW WESTMINSTER PL - PITT LAKE V - VANCOUVER WR - WHITE ROCK 20 km

Crescent Beach After Clague et al. 1983

European Settlement

	GLACIER ICE
	WATER
	LAND
(FLUVIAL, GLA

FLUVIAL, GLACIOFLUVIAL, AND ORGANIC DEPOSITS H - HANEY L - LADNER MC - MISSION CITY NW - NEW WESTMINSTER PL - PITT LAKE V - VANCOUVER WR - WHITE ROCK 20 km

Ebb Tide

Flood Tide

Source: CHS Current Atlas

DATA SOURCES: Province of British Columbia Historical Air Photos (1949); City of Surrey Orthophotos (2013)

ure 5.7 Approximate 2013 extent of salt marshes in Mud Bay overlaid on 1949 and 2013 imagery.

Figure 5.8 Approximate 2013 extent of salt marshes in southeastern portion of Mud Bay overlaid on 1949, 1979, 2004, and 2013 imagery

Natural Shoreline

The Intertidal zone occurs between the low tide and high tide.

Shoreline with Dyke

Sea Level Rise

Sea level rise further places the intertidal zone at risk. The salt marsh is further squeezed or lost altogether as it becomes submerged for longer durations.

Sea level rise

Potential loss of intertidal zone

INTERTIDA

ZONE

What's at risk?

Credit: Coastal Shore Stewardship, a guide for Planners, Builders, and Developers (2002)

Riparian Squeeze Example #1 Aug. 29 '08 Jan. 16 '09

Riparian Squeeze Example #1

• April 1, 2013

Riparian Squeeze Example #2

Illustration 8-28

Source: Surrey Story

Barrie Sanford

Floodplain Elevation

Mean Sea Level Migration

Shoreline Inventory

Additional shoreline mapping was completed by Golder and Associates, 2018

Future vulnerability?

Additional shoreline mapping was completed by Golder

Future vulnerability?

Additional shoreline mapping was completed by Golder

Future vulnerability?

Additional shoreline mapping was completed by Golder

24% of the shoreline is partially protected by a vegetation bench and is not armoured22% of the shoreline is partially protected by an unvegetated bench and is not armoured

• Rising sea levels may require some of these areas to be armoured in future as coastal squeeze impacts the vegetative buffer.

Summary

- Mud Bay is an inherited landscape
- Mud Bay has not undergone large changes in sedimentary conditions in recent years
- Mud Bay is at risk of coastal squeeze with sea level rise
- Green infrastructure interacts with grey infrastructure

What are we doing?

Today's objective: To gather relevant stakeholders to discuss potential consequences of the predicted environmental effects. These consequence scores will be used to calculate risk to understand how to direct mitigation efforts.

Project objective: To identify what are likely to be the greatest impacts that the expected sea level rise will have on ecosystem processes, habitat and wildlife species in the study area, and prioritize these impacts and potential solutions.

Limitations

- There is a lot of uncertainty associated with this planning project
- We recognize the complexity of the limitations.
- The predictions for climate change and sea level rise, and their influence on habitat is uncertain
- Predicting how natural systems will react over the next 100 years is extremely difficult
- This is the start of a long planning process.
- This exercise is not meant to provide firm answers or decisions
- It is intended to inform an ongoing discussion on future management of the affected areas

Potential environmental effects of expected changes in climate have been pre-assessed and narrowed down for this workshop. To save time, the probability of the effect occurring has been provided.

Preliminary Options Overview

RIVER REALIGNMENT

MUD BAY BARRIEF

1. Current Convention

- 2. Mud Bay Barrier
- 3. Coastal Realignment to 152nd Street
- 4. River Realignment
- 5. Coastal Realignment to Highway 99
- 6. Edge Realignment
- 7. Managed Retreat
- 8. No Adaptation

CURRENT CONVENTIONS

OPTION DESCRIPTION:

- Surrey continues raising current dykes to meet projected flood protection requirements.
- Present annual dyke maintenance costs of about \$1 million increase substantially with time.
- The BNSF railway embankment along Mud Bay is not a dyke and, as such, cannot be raised; a separate parallel dyke is required.
- As sea levels continue to rise, the time the sea dams remain open is shortened and significant additional pumping capacity is required.
- Alternatively, river dykes could be raised. Raising of dykes and other upgrades will be implemented and phases as required.
- Ongoing costs would be significant. Agriculture drainage worsens as riverine flooding & groundwater levels rise.

Year 2100

Current Conventions

Current Conventions WHAT THIS COULD LOOK LIKE

Metro Vancouver dike upgrades to cost billions

Improvements needed to protect Lower Mainland from rising sea levels

CBC news story on Lower Mainland dyke upgrades.

Cross-section showing increased height and width of new dykes compared to existing.

CFAS

Current Conventions TECHNICAL CRITERIA BY 2100

Flood damage prevention would be largely reactive (poor). The outcome of failures would be poor. Geotechnical stability is poor. The adaptability of the option over time is limited and operation and maintenance costs are high (very poor). Capital cost are between \$100M to \$1B.

Current Conventions VALUES CRITERIA BY 2100

RESIDENTS: No residents are displaced, however, risk levels elevate as more people may build in flood zones. Land ownership remains intact with additional rights to land along dykes provided to the City.

AGRICULTURE: Minimal agriculture is displaced, but salinization and subsidence continues to be an issue. Some agricultural land is lost due to raising and widening of dykes.

ENVIRONMENT: Salt marsh is negatively impacted by coastal squeeze. Sea dams would be replaced with ones that have fish ladders allowing salmon migration. Migration from land to water could also be difficult for some species due to larger dykes.

Today's Activity

To determine the consequence of the 5 selected environmental effects under a maintaining current conventions scenario, using a scale of 0-5.

2 Tables:

- 1. Birds & Mammals DUC
- 2. Aquatic Species, Amphibians & Invertebrates DHC

<u>5 minutes</u> – individual consequence scoring of environmental effects <u>20 minutes</u> – group discussion of potential environmental effects and consequences

<u>5 minutes</u> – summarize group discussion for reporting back

Today's Activity

Consequence Rating of the impact on species groups

0	No effect	Will have no impact on population levels
1	Very low	Insignificant or negligible effect on population levels
2	Low	May impact some individuals but will not have a significant impact on the local population levels
3	Moderate	Will have a noticeable impact on population levels. With habitat replacement/restoration it will be possible for the populations to recover
4	High	Will have a significant and permanent impact on population levels in the study area. With habitat replacement/ restoration it may not be possible for populations to recover
5	Very high	Will have impacts that could potentially result in the extrication of this group from the study area

Ecosystem Vulnerability Workshop
Plenary Discussion

DRAFT table for discussion and feedback

Birds & Mammals

		Cosequence of Impact on Species Groups				
Possible Detrimental Environmental						
Effects	Probability of Impact	Song Birds	Waterfowl Birds	Shorebirds	Raptors	Mammals
	(1 low -5 High)	Spotted Towee	Mallard	Western Sandpiper	Red-tailed Hawk	Townsend's Vole
Loss of intertidal habitat	5	0	2	4	2	3
Less exposure time of mud flats	5	0	2	5	2	0
Loss of eelgrass community	4	0	5	3	2	0
Loss of terrestrial habitat	2	1	1	2	4	4
Increase salinity in freshwater						
habitat	3	1	1	0	1	1
Possible Detrimental Environmental						
Effects		Risk Rating				
Loss of intertidal habitat		0	10	20	10	15
Less exposure time of mud flats		0	10	25	10	0
Loss of eelgrass commmunity		0	20	12	8	0
Loss of terrestrial habitat		2	2	4	8	8
Increase salinity in freshwater						
habitat		3	3	0	3	3

DRAFT table for discussion and feedback

Aquatic Species, Amphibians & Invertebrates

			Cosequence of Impact on Species Groups			
Possible Detrimental Environmental			Marine			
Effects	Probability of Impact	Marine Fish	Crustaceans	Freshwater Fish	Amphibians	Invertebrates
	(1 low -5 High)	Coho Salmon	Littleneck Clam	Cutthroat Trout	Pacific Tree Frog	Anise Swallowtail
Loss of intertidal habitat	5	2	3	0	0	2
Less exposure time of mud flats	5	1	2	0	0	1
Loss of eelgrass community	4	5	4	0	0	1
Loss of terrestrial habitat	2	1	1	0	1	3
Increase salinity in freshwater						
habitat	3	1	1	3	5	3
Possible Detrimental Environmental						
Effects	Risk Rating					
Loss of intertidal habitat		10	15	0	0	10
Less exposure time of mud flats		5	10	0	0	5
Loss of eelgrass commmunity		20	16	0	0	4
Loss of terrestrial habitat		2	2	0	2	6
Increase salinity in freshwater						
habitat		3	3	9	15	9

Expected Risks

The loss of exposure time for foraging associated with mud flats. The greatest impact from this will be to migratory shorebirds which rely heavily on this area as a stopover to feed and replenish their reserves for the continued migration north.

<u>Mitigation</u>: Monitor sediment transport in Mud bay and design engineering interventions to promote the retention of and depth of sediment.

Photo by Bill Boulton. From: https://deltafarmland.ca/resources/farmlandwildlife/shorebirds/western-sandpiper/

Expected Risks

The loss of eel grass communities. The depth of Mud Bay is expected to increase, which could reduce the available habitat for eel grass communities which support a **diversity** of marine species and birds.

<u>Mitigation</u>: Monitor the extent of eel grass communities and their tolerance to changing depths. Design engineering interventions to promote the retention of sediment to the preferred depth of eel grass.

Photo by Jim Dickson From: http://linnet.geog.ubc.ca/ShowDBImage/ShowStandard.aspx?index=366

Expected Risks

Loss of intertidal habitat. This transition zone between the marine and terrestrial habitat is highly productive and used by a wide range of species. Its loss will impact forage opportunities for migratory & resident birds, mammals, as well as marine life.

<u>Mitigation</u>: Promote "Green Shores" approach to all new dikes. Design intertidal features to help trap sediment and extend the intertidal zone out as far as possible.

Photo of Mud Bay Park, from the Surrey Biodiversity Strategy

- Subject to federal funding application and acceptance
- 2 pilot locations, 2 control locations

The Message Box

Tool to streamline the information into concise messaging

- What are the problems/conflicts/issues involved?
- Why does this information matter to the identified audience?
- What are some of the possible solutions to this problem?
- What are the potential benefits of resolving this problem?

Problems

EXAMPLE for discussion

- Large fish biomass declined by at least 90% across the global ocean
- Baseline: prior to industrial exploitation there were 10 times more large fish
- Initial declines happened very rapid and are often poorly documented
- Management will underestimate decline
- Species composition has undergone large changes as well
- The entire ocean has been transformed, no "blue frontier" left
- Changes very uniform from the tropics to the poles, close and distant to shore

Benefits?

- Among the last free-ranging large animals on earth
- Most valuable wild animals on earth = huge economic benefits
- Important ecological roles
- Lions and tigers of the sea
- First large land mammals and freshwater fish, then coastal, then whales - now everything else is reaching the limit
- Its time to turn this around

So What?

- Fisheries will suffer, possibly collapse
- This likely has major ecosystem consequences (but we are ignorant to what precisely will happen)
- Populations and species may go extinct

Solutions?

Recovery by reducing fishing pressure

- Reduce effort (hard to control because fishing pressure increases)
- Reduce quota (hard to achieve and on its own almost always not (sufficient)
- Marine reserves (many promising examples, almost never fail to halt declines)

CFAS

Audience: National & International Media

CFAS

Audience: General Public

Audience: General public

CFAS

Surrey - Coastal Flood Adaptation Strategy Communications Plan

Science and Storytelling

Connect

Engage

Inspire

Ecosystem Vulnerability Workshop
Next Steps

DMAF

Blue Carbon

Municipal Natural

Assets Initiative

Data Availability/Sharing & Collaboration

CFAS

CFAS

Crowd-funding with MEOPAR

Eelgrass mapping, monitoring and research

Shared Waters

Coastal Restoration Fund

Boundary Bay Health Conservation Committee

CFAS

SURREY COASTAL FLOOD ADAPTATION STRATEGY (CFAS)

Thank you!

EDERATION DF CANADIAN IUNICIPALITIES

FÉDÉRATION CANADIENNE DES MUNICIPALITÉS