A-1 CORPORATE REPORTS

List of Reports

Corporate Report No. C006

October 30, 2006

Corporate Report No. C020

April 30, 2007

Corporate Report No. R159

July 28, 2008

Corporate Report No. C001

February 9, 2009

Corporate Report No. R151

July 25, 2011- City Centre Plan Stage 2 Update

Corporate Report No. R114

July 28, 2012- City Centre Community Building Strategy

Corporate Report No. R155

July 17, 2013- City Centre Update

A-2 CONSULTANT REPORTS AND OTHER REFERENCES

Reference List

- A-2.1 Stormwater Infrastructure
- A-2.2 Sanitary Sewer Infrastructure
- A-2.3 Water Infrastructure
- A-2.4 Surrey City Centre Heritage Review

A-2.5 Mid Century Modern in Surrey's City Centre A-21

Consultant Report

STORMWATER INFRASTRUCTURE

7 Stormwater Infrastructure

The City Centre vision is to be the Fraser Valley's metropolitan centre supporting vibrant downtown neighbourhoods, a dynamic business sector, as well as civic, university and hospital districts. In addition, Surrey's goal is for the City Centre to be one of North America's most sustainable downtowns.

The following reference to storm drainage system needs within City Centre is taken from the July 2008 City Centre Plan Update for Council:

"Sustainable drainage features are supported for volume reduction and water quality purposes. Opportunities for implementing best management practices, such as "green" practices in all new development projects, would reduce the need for significant stream

restoration works and will be investigated as part of this study".

The objective of this study is to identify options for managing the stormwater, including the best management practices referred to above, while supporting the Surrey City Centre vision of a sustainable, liveable and dynamic community.

Urbanization and Stormwater Impacts

Prior to development, most native soils have sufficient permeability to absorb and infiltrate rainwater. This is because of a combination of factors, including the structure of the soil, the connected pores and channels created by plant roots, and the presence of leaf litter and other organic matter. Because most rain storms are not large enough to exceed the soil permeability and completely saturate the native and undisturbed soil, only a small percentage of water collects on the surface. Under these conditions, water that accumulates at the surface typically collects in rivulets that combine to form creeks, streams, and rivers.

Urbanization results in the loss of native soil conditions as a result of soil compaction and the creation of impervious surfaces. These changes disrupt the hydrologic cycle as shown in *Figure 7.1*. The Impacts include increased stormwater flow rates and volumes as well as decreased groundwater recharge and, consequently, low base flows into streams.

Urbanization, that does not include proper protection measures, can have serious negative impacts on the quality of surface water and groundwater. As land is developed, the volume of pollutants from vehicles and other human activities increase. The increase in impervious areas reduces the availability of the natural biological processes of soil to remove impurities from the water. The increased runoff flows wash pollutants from impervious areas, concentrating them in the storm sewers and transporting them downstream to receiving waters. Pollutants of concern include sediment (suspended solids), heavy metals (dissolved and particulate, such as lead, copper, zinc, and cadmium), nutrients (such as nitrogen and phosphorous), bacteria and viruses, organics (such as oil, grease, hydrocarbons, pesticides, and fertilizers), floatable trash and debris.

Managing the quality and quantity of stormwater runoff in the City Centre area will help protect streams so that they remain healthy and productive. Well planned measures can help reduce the need for costly infrastructure and stream restoration as well as provide green public amenities.

7.0 Existing & Future Servicing Issues

7.0.1 Summary of Previous Watershed Studies

Stormwater from the City Centre area flows into Bolivar Creek in the north and Quibble Creek in the south. The City's Watercourse Classification Map, shows Quibble Creek and most of its branches are of 'Class A' category ('inhabited or potentially inhabited by salmonids year-round'); Bolivar Creek is a combination of 'Class B' ('significant food/nutrient value') and 'Class A'.

The City of Surrey completed the "Quibble Creek Functional Feasibility Study" (2003), the "North Bluff Drainage and Slope Stability Assessment", (2000) and the "Quibble Creek Integrated Stormwater Management Plan" (2014), Bridgeview - North Slope (2015). Important conclusions from these studies that pertain to development and storm water management within City Centre are outlined below. These studies are based on earlier density forecasts for the City Centre area.

The City Centre Plan proposes greater levels of imperviousness and population densities than previously anticipated. This makes the recommendations for mitigation and pollution control from the earlier studies more important because the negative impact of development on the receiving waters will be greater than originally expected.

Quibble Creek Issue Functional Feasibility Study

Key points from the Quibble Creek Issue Functional Feasibility Study include:

- The on-going densification of developments in the Quibble Creek watershed is increasing its impervious surface area and contributing to increased stormwater runoff volumes and rates. These higher flow rates and volumes are impacting the receiving watercourses and their flow regimes, leading to streambed and bank modifications. In addition, an increase in imperviousness results in a decreasing the base flows and deterioration of stormwater runoff water quality to the creek. Future development within the City Centre area will increase impervious surface area by an additional 15%. This will increase both potential creek erosion and the volume of sediment entering the watershed. The watercourses are experiencing significant flows during frequent events of up to the 5-year recurrence level. This part of the flow regime has the greatest disturbance impact on aquatic habitat in the watercourses.
- Approximately 35% of the length of Quibble Creek and its tributaries do not have the standard 30m riparian corridor. Almost the full length of the City Parkway and King George Boulevard tributaries do not have a 30m riparian corridor.
- Based on biophysical inventories of Quibble Creek conducted in 1995 and 2000, contaminated sediments continue to be a critical problem in the upper reach from immediately below Fraser Highway north to the 100th Avenue culvert. As a fish-bearing water course, the Quibble Creek report concludes that it is critical to control sediment loading to the watercourse.
- The Quibble Creek Functional Feasibility Study recommends 'on-site storage; riparian (buffer zone) protection; and the addition of sediment collection units'. In particular the study recommends that 'developers should be required to implement measures that would reduce runoff volume' and that sediment control/water quality improvement drainage units 'should also be promoted to control the quality of stormwater discharges from new commercial and industrial developments, redevelopments and parking lots, particularly in the City Centre area'.

North Bluff Drainage and Slope Stability Assessment

Key points from the North Bluff Drainage and Slope Stability Assessment include:

 The proposed ultimate land use for City Centre has a significant impact on volumes of runoff and peak stormwater flows. It identifies a series of storm system improvements to accommodate this additional runoff, including the Bolivar Creek Diversion sewer which will mitigate ongoing and future erosion potential along Bolivar Creek.

Quibble Creek Integrated Stormwater Management Plan

The Quibble Creek Integrated Stormwater Management Plan (ISMP) includes the following key issues:

• Flood management of undersized storm sewers and culverts, erosion management in the stream channels, mitigation of future development impacts from increasing imperviousness in the watershed, environmental protection due to threats to riparian and stream integrity and the need to establish the long term vision for the watershed.

Bridgeview - North Slope Integrated Stormwater Management Plan

The Bridgeview - North Slope (ISMP) includes the following key issues:

- Protect and preserve green space and ecosystem sites, hubs, and corridors that support wildlife habitat
- Include water quality facilities and on-site stormwater detention.
- Stricter enforcement to prevent/reduce polluting of water courses and drainage systems by residents, businesses, and the industrial areas.

The City has implemented a number of the recommended stormwater capacity upgrades for City Centre which are described below on **Table 7.1**. This highlights the investment already expended in the area to prepare for development. The works completed to date are based on a lower level of development than the land use designations of the current City Centre Plan; however it is expected that by incorporating mitigation measures into the current plan, the completed infrastructure will be adequate to service the area.

Table 7.1 City Centre Capacity Upgrades Completed to Date

Year	Watershed	Project	Cost
2000 – 2011	Bolivar	Bolivar Creek Diversion Sewer – Bolivar Creek By-pass north of City Centre Bolivar Phase 3 Storm Trunk – 104 Avenue/City Parkway – 108 Ave/University Drive 1050mm diameter storm sewer	\$2,100,000
2007	Quibble	City Centre Detention Pond at Whalley Blvd/100 Avenue	\$560,000
2012	Bolivar	Trunk sewer installation servicing the area north of 108 Ave and east of 136 St	\$2,200,000
2012	Quibble	Trunk sewer installation along 104 Ave from 140 St to Whalley Blvd, south along Whalley Blvd to 103 Ave and along the alignment of 103 Ave to King George Blvd.	\$1,900,000
		Total	\$6,760,000

7.1 Design Criteria & Analysis

7.1.1 City Strategy and Policy

The City Centre area servicing is aligned with existing key documents and planning processes such as the July 2008 City Centre Plan Update for Council and the ongoing associated planning process, City of Surrey Sustainability Charter, Biodiversity Conservation Strategy and the City's drainage and environmental by-laws and policies.

Objectives from these various documents that are relevant to stormwater management in the City Centre area are outlined below.

City Centre Area Plan Update

The goals listed below were taken from the City Centre Area Plan Update – Phase II, Stage 1 Results. They outline elements of sustainable rainwater management such as implementing best practices, minimizing imperviousness, increasing landscaping and green space, promoting green roofs and the use of green standards for building design and construction.

- Exemplify design excellence by incorporating compact urbanism, density and sustainability to the greatest extent possible, consistent with best practices;
- Minimize surface parking and require extensive landscaping of any surface parking areas;
- Encourage landscaping and screening over most rooftop surfaces;
- Protect and enhance the Quibble Creek Greenway;
- Provide a variety of mini-parks and mini-plazas throughout the City Centre and support the park-like feel of the Binnie Neighbourhood, Hospital District and Fraser Neighbourhood;
- King George Boulevard and University Drive will be developed as attractive planted boulevards with wide sidewalks;
- Create attractive new Greenway routes on 102 and 105A Avenues;
- Accelerate the development of existing Greenway routes to a high standard;
- Create "Green Infrastructure" by introducing accessible natural features into the City Centre;
- Reduce the effective impermeable surface area;
- Promote green roofs, for their social, economic and environmental benefits; and
- Pursue LEED or LEED-like certification for municipal buildings and establish minimum green standards for multi-family and commercial buildings.

City of Surrey Sustainability Charter

The Sustainability Charter is a commitment by the City to place the principles of social, environmental and economic sustainability as the foundation of all decisions. It is the City's over-arching policy document, which guides the actions of the City. In the absence of other specific policies, direction will be taken from the Charter.

The charter identifies actions required to implement the Vision, the Goals and the Action Framework. It reflects the areas of interest within the City's three spheres of influence: corporate operations; municipal jurisdiction; and influencing other levels of government. Under the corporate operations sphere, the sustainability charter has identified a number of actions. Those actions that are relevant to rainwater management and the City Centre area are listed below.

- EN8: Apply Sustainable Engineering Standards and Practices;
- EN9: Institutionalize Sustainable Land Use Planning & Development Practices; and
- EN12: Enhance and Protect Natural Areas, Fish Habitat and Wildlife Habitat.

Surrey Drainage Policy

The City's drainage servicing practice is contained in Storm Drainage Management Policy No. H-45. The objectives that are relevant to a Stormwater BMP Strategy for City Centre are listed below.

- Provide adequate servicing infrastructure to all newly developing areas and minimize downstream adverse impacts;
- Protect the physical integrity of watercourses/creeks;
- Minimize the detrimental impact on aquatic life and wildlife habitats along watercourses; and
- Minimize the potential for water quality impairment resulting from land development in the watersheds.

Metro Vancouver Integrated Liquid Waste Resource Management Plan

In 2010 Metro Vancouver issued the Integrated Liquid Waste Resource Management Plan. This plan outlines requirements for municipalities to minimize stormwater impacts by managing rainwater runoff at the site-level. In particular, all municipalities within Metro Vancouver are required to update their municipal utility design standards and neighbourhood design guidelines to enable on-site rainwater runoff management.

7.1.2 Current Best Practices

Low Impact Development

Local governments are increasingly adopting ordinances that allow and encourage low impact development (LID) practices. In the area of rainwater management, LID works to infiltrate stormwater on-site rather than collecting, conveying and discharging stormwater off-site. The goals of LID are to enhance overall habitat functions, reduce runoff, recharge aquifers, maintain historic in-stream flows, and reduce drainage operations and maintenance costs.

Surrey is among the leaders in environmental responsibility and good engineering design practices. As we become aware of changing practices and as our continuous improvement process identifies appropriate new minimum standards we are bound to adopt these new practices. As an example of changing current best management practices, staffs have become aware of efforts in similar cities to Surrey such as Portland. The City of Portland has been recognized as a leader in innovative and sustainable stormwater management. Located in the Pacific Northwest of the United States, it has a similar climate, density, and urbanization issues as found in the City of Surrey.

Portland developed a citywide stormwater regulatory program in 1999 to meet State and Federal regulatory requirements, which includes water quality and flow control design standards for onsite stormwater management facilities. Their program focuses on low-impact development practices, structural source control devices, and maintenance and operational best management practices (BMPs) designed to improve stormwater quantity and quality.

Stormwater that is generated from private property must be managed on private property, in privately maintained facilities. Total onsite infiltration is required with vegetated infiltration facilities unless a technical analysis proves that it is not feasible due to high groundwater, poor infiltration rates (less than 2 in/hr), steep slopes, contaminated soils or space constraints. Stormwater that is generated from public property must be managed on public property, in publicly maintained facilities. In 2005 the City of Portland had approximately 9,000 public underground infiltration systems to discharge stormwater runoff from publicly owned streets.

Where complete onsite infiltration is not feasible, vegetated onsite retention/detention facilities are required to the maximum extent possible. Flow control for any stormwater discharge leaving the site must be sufficient to maintain peak flow rates at their pre-development levels for the 2-year, 5-year, and 10-year, 24-hour runoff events. For redevelopment projects, pre-development condition is defined as undeveloped land.

The Portland example demonstrates that infiltration in the downtown environment is feasible. While Portland was required by U.S. law to implement the measures, Surrey has the opportunity to implement measures to achieve our sustainability objectives voluntarily, in a professional and environmentally sound way as we move forward.

7.1.3 City Centre Objectives

The objectives of the stormwater servicing of the City Centre Plan is based on the Land Use Plan, City of Surrey Sustainability Charter, environmental and hydraulic assessments of the City Centre watersheds, the Quibble Creek and Bridgeview - North Slope ISMP, and low impact development and best practices. More specifically, the following stormwater objectives are as follows.

- 1. Adequately service the area to protect life and property;
- 2. Mitigate the adverse impacts of urban runoff water quality on watercourses;
- 3. Mitigate the adverse impacts of peak flows and velocities in the watercourses; and
- 4. Protect the riparian habitat and support the aquatic life along the watercourses.

Table 7.2 outlines strategies and performance targets that would enable the City of Surrey to meet the objectives outlined above.

Objective	Strategy	Performance Target
Adequately service the area to protect life and property	Ensure the drainage system is designed according to the City of Surrey Engineering Department Design Criteria Manual.	As outlined in the Design Criteria Manual. Design flows for the 5 year to be in pipe and safe conveyance of 100 year.
Mitigate the adverse impacts of urban runoff water quality on watercourses	Control the flow of pollutants from the larger sources (construction sites and motor vehicles),	Total Suspended Solids (TSS) < 25 mg/litre
Mitigate the adverse impacts of flows and velocities in the watercourses	Control volume and rate of flow from frequent rainfall events and ensure sufficient base flows in streams.	Volume: Retain 50% of the 2 year storm Flow Rate: Reduce post-development discharge rate to pre-development discharge rate for the 2, 5 and 10 year 24 hour storm.
Protect the riparian habitat and support the aquatic life along the watercourses	Stream corridors are protected by setting minimum stream setbacks.	30 metre riparian corridor (e.g. 30 metres from top of bank on either side of the stream) is protected along the entire length of all watercourses.

Table 7.2 Stormwater Strategy and Performance Targets for City Centre Area

7.2 Servicing Options & Proposed System

7.2.1 Options for Managing Stormwater

The design criteria manual outlines the basic storm drainage infrastructure required to provide Surrey residents with a reasonable level of service and safety. All development in City Centre is required to apply good engineering practices in order to meet or exceed the standards set out in the design criteria. By designing City infrastructure to the Design Criteria standards, we meet the first servicing objective to adequately service the area protecting life and property

To meet the next two objectives the City investigated several servicing options to determine which are the most cost effective and provide the desired results

Three options were evaluated in detail to determine their effectiveness for servicing City Centre:

- 1) Diversion:
 - Diverting stormwater away from sensitive tributaries and directly discharges it into the nearest river.
- 2) Community Infiltration Facility:
 - Collect runoff from a catchment area and gradually infiltrates it into the ground to recharge base flows at a centralized facility.
- 3) On-Site BMPs:
 - Application of BMPs on each site to capture stormwater directly and infiltrate it into the ground.

7.2.1.1 Diversion

The objective of a diversion sewer is to convey stormwater away from sensitive tributaries and directly discharge it into the nearest river. For the northern portion of City Centre that flows into Bolivar Creek the additional stormwater volume will need to be diverted into the Fraser River. This diversion may follow a similar alignment to the diversion sewer detailed in the North Bluff Drainage and Slope Stability Assessment report and would be approximately 2.4 km in length. The estimated cost for the Bolivar Diversion was approximately \$2.5 Million.

For the southern portion of City Centre that flows into Quibble Creek the City has indicated that the three tributaries to Quibble Creek cannot accept increased flows and volume. Therefore the nearest outlet for this diversion would be the Serpentine River at 156 Street and 68 Avenue and the diversion sewer would have to be approximately 7.6 km in length and approximately \$7.0 Million

These diversions do not allow for groundwater recharge and result in a significant modification to the natural flow regime of the receiving creeks which long term would be noticeable as a possible reduction of dry weather base flows. Although these diversion options would have no on-site requirements for developers, they would not sufficiently preserve Quibble and Bolivar Creeks. This option fails to meet the environmental and financial objectives.

7.2.1.2 Community Infiltration Facility

Community infiltration facilities require a large amount of land in order to store the captured volume from runoff and slowly re-introduce it back into the ground. While this option is more land-intensive, it does eliminate some of the concerns of maintaining many separate on-lot and on-street underground infiltration facilities. However, a community infiltration facility for the City Centre Area would need to be over 50 hectares in size. While the infiltration would provide a good approach to address some of the water quality objectives, due to the lack of available land, a large community infiltration facility is not a viable solution as it costs significantly more compared to the third alternative below.

7.2.1.3 On-Site BMP

The objective of best management practices (BMP) is to provide measures, on each lot, that will mimic the natural rainfall runoff response of the site prior to development. By making the site behave in a manner similar to predevelopment, the impact of development is reduced, thereby protecting downstream properties, infrastructure, and natural resources from the increases in stormwater runoff flow rates, volumes and pollution that result from development.

Detention is a BMP that helps control flow rates by storing excess volume and releasing it over time. In the past, flow control efforts often relied solely on detention facilities such as ponds, tanks, or vaults that control peak flow rates. These facilities, however, allow the duration of high flows in creek systems to increase as the stored volume is released, causing the potential for increased erosion downstream. For example, after development with detention, the magnitude of the 2-year peak flow rate may not increase, but the amount of time (duration) that the flow rate occurs will increase.

This highlights the importance of designing BMPs with a system approach rather than as individual components.

Combining systems that can have both storage and infiltration or evapotranspiration such as pervious pavement, eco-roofs, planters, swales, and other surface vegetated facilities, lower the overall runoff volume and reduce the duration and frequency of the peak flow rate.

Stream systems that require erosion protection, such as Quibble and Bolivar Creeks, benefit from the use of the combination of retention systems, infiltration and evaporating stormwater. Vegetated retention systems recharge groundwater that serves as the base flow for streams during the dry season. Where retention systems cannot be used, detention systems that control the duration of the geomorphically significant flow (i.e., flow capable of moving sediment) must be used. Such detention systems lower release rates and must be designed to protect the stream channel.

Time of concentration (the time it takes rainfall to accumulate and run off a site) is an important factor in hydrologic impacts of development. The resistance of soils, natural topography and vegetation slow runoff from undeveloped sites. Flow rates may be controlled using detention, but when they are combined quickly in fast-flowing conveyance pipes, the downstream effect will still be increased in-stream flow rates and volumes. Breaking flow patterns up into surface retention systems helps increase a site's time of concentration and lessens downstream impacts.

In addition to controlling flow, vegetation may be one of the most cost effective and ecologically efficient means available to improve water quality. Vegetated facilities filter stormwater, removing pollutants as the water flows through the vegetation and soil. Vegetation within riparian areas also shades water courses, which lowers water temperature; captures and absorbs water, which reduces peak flows; stabilizes soils and banks; provides wildlife habitat; and improves the aesthetic quality of the area.

A BMP Strategy for the City Centre Area should ensure that development protects the riparian area of stream channels and that post-development rainwater runoff:

- Controls the flows to the receiving conveyance facilities and water bodies to their natural capacity;
- protects stream banks and stream channels from erosion;
- protect the quality of downstream water bodies; and
- prevents upstream or downstream flooding.

In addition to achieving all of the objectives outlined above, a BMP strategy for the City Centre area can support a functional and attractive public realm.

Managing stormwater involves a variety of measures from on-site BMPs to area-wide storm sewer infrastructure.

7.2.2 Addressing Water Quality through BMPs

Changes in land use, loss of natural bio-filtration capacity, increases in impervious area, and pollutant laden runoff associated with urban development all contribute to water quality which impacts fish and human and fish habitat. The area studies have concluded that protecting Quibble Creek from contaminated sediments is a significant issue. Land development guidelines recommend the treatment of all stormwater runoff. It is recommended that Surrey treat the runoff from City Centre area before discharging to Quibble and Bolivar Creeks. Water quality is now a requirement that must be incorporated into all design practices.

Water Quality BMPs are physical, structural or management practices that reduce or prevent water quality degradation. Many of these are the same as, or similar to BMPs used for runoff volume reduction and rate control, but have ancillary benefits for water quality. For example, infiltrating stormwater on-site will also benefit water quality.

Contaminants within stormwater come from a variety of sources:

- Natural sources;
- Roadways and parking areas; and
- Private property.

A variety of measures are needed to adequately protect water quality, due to the range of sources and contaminants. The measures that are recommended for City Centre are listed below:

- Erosion and Sediment Control By-Law (already in effect) with enforcement;
- Require runoff from underground parking to drain to the sanitary sewer (already in effect)
- Optimised O&M practices such as street sweeping, catch basin cleaning, public education and spill reporting and response.
- Water quality treatment for all street runoff and surface parking areas (proposed new measure).

There are a variety of water quality treatment options which can be generally grouped in the following categories:

- Vegetated swales and strips;
- Dry basins;
- Wet basins;
- Constructed wetlands;
- Vortex separators;
- Oil/water separators;
- Inert media filters;
- Sorptive media filters;
- Drain inlet devices; and
- Infiltration systems.

The BC Water Quality Criteria for Aquatic Life recommends a maximum total suspended solid (TSS) of 25 mg/L. Runoff from vehicle areas (roadways, parking lots) and construction sites will be treated to meet the BC Water Quality Criteria for Aquatic Life (TSS < 25 mg/litre).

Based on land constraints within the City Centre area, we investigated the feasibility of treating road runoff by having an engineered treatment system (such as a vortex separator) upstream of each location where stormwater runoff is discharged to a creek. Within City Centre we identified seven locations where the majority of the stormwater is discharged to Bolivar or Quibble Creek (as shown in *Figure 7.2*). By placing an engineered treatment system near each of these discharge points the stormwater runoff within the City Centre area will meet the given performance target. The added benefit is that all the stormwater runoff, and not just road runoff, will be treated.

Figure 7.2 Potential Locations for Water Quality Treatment Facilities

7.2.3 Addressing Volume and Flow Control through BMPs

As outlined in **Table 7.2**, it is recommended that Surrey retains 50% of the 2 year storm and control post development flows to pre-development levels. The most effective way to control runoff is through on-site BMPs such as rain gardens, green roofs and pervious pavement. The 24-hour 2-year rainfall amount for North Surrey is 64.6 mm. Since the objective is to retain 50% of the 2 year storm, 32.3 mm of rainfall must be retained on-site.

Community detention ponds are complimentary treatment processes for an effective BMP strategy. They provide additional water quality and detention benefits. However, in high density areas like City Centre it is challenging to implement because of high construction costs and the lack of available land. A small community pond has been constructed at the headwaters of Quibble Creek. Additional water quality and flow control is needed to protect this salmon bearing stream.

Controlling stormwater runoff on-site will reduce the degradation of Bolivar Quibble and the downstream Bear, creeks. In order to be effective the BMPs must retain 50% of the 2 year storm and detain post development flows to pre-development levels.

A successful BMP strategy must be simple to implement. The following BMP strategy for on-site stormwater management for the City Centre Area will provide the desired mitigation and is designed to be built into the on-site landscaping that normally is required of new development as part of planning for an aesthetically pleasing and healthy urban environment.

The following flow chart **Figure 7.3** outlines a staged approach based on various landscaping options that can be followed by developers to cost effectively meet the BMP requirements:

Figure 7.3 BMP Implementation

The objective is for sites to use infiltration techniques wherever possible, but where that is not feasible, sites may use evapotranspiration techniques. If both infiltration and evapotranspiration techniques are not sufficient, a site will be required to implement detention facilities. *Appendix C* outlines a number of BMPs and whether they are suitable for infiltration, evapotranspiration or detention.

A spreadsheet style worksheet has been prepared for Developers to confirm that they are meeting the landscape values or on-site detention requirements – see **Appendix C**. Each Developer is required to submit this information with their development application.

Additionally, a Stormwater Management Typologies and Strategies for developments in Surrey City Centre and other emerging urban neighbourhoods has been prepared for the City by van der Zalm + associates Inc. and is also included in **Appendix C** as reference material.

7.2.3.1 Priority 1 – Infiltration

Runoff can be infiltrated through absorbent landscaped areas, infiltration rain gardens, infiltration basins/ trenches, soakaway manholes or pervious pavements. Provide 0.5 cubic metres of free draining topsoil for every square metres of impervious area. Place on native soil to provide infiltration. Direct runoff to the landscaped area in an acceptable manner to allow flows to infiltrate. Where there are insufficient native soil areas for the placement of a reasonable depth of topsoil to meet the above requirement, treat the remainder of the site with detention.

Required Volume of Infiltration Material $(m^3) = (\text{site area in } m^2) \times 0.5 \text{ metres}$

7.2.3.2 Priority 2 – Evapotranspiration

Runoff from areas that cannot be infiltrated into the ground due to site constraints such as underground parking requirements can be controlled through vegetated areas that use detention and evapotranspiration. These vegetated areas must have at least 75 mm of growing medium and be designed to reduce the volume of the 2 year storm by at least 50%. For each square metre of landscaped surface on top of an impervious surface such as a parkade or rooftop, the site must have 0.02 m³ of stormwater storage. Examples of vegetated areas include green roofs and planters.

Required storage $(m^3) = (landscaped area with no infiltration in m^2) \times 0.02$ metres

Rainwater that is stored on-site should be discharged at a rate that mimics the natural infiltration function of providing low flows to streams. If we assume that under natural conditions the soil had an infiltration rate of 1mm/hr, then the discharge rate should be 3 L/sec/ha. The design of the system is intended to be allowed to drain over 48 hours. Examples of using on-site landscaping to manage stormwater are illustrated in *Figure 7.4*.

Figure 7.4 Examples of Using On-Site Landscaping to Manage Stormwater

7.2.3.3 Priority 3 – Detention

Runoff from areas that cannot be infiltrated or treated through evapotranspiration will need to be detained such that the post development flow equals the pre development flow. Pre-development conditions should be assumed to be vegetated landscape with a runoff coefficient (C) of 0.20.

For each square metre of bare plain impervious surface, from which the runoff is not infiltrated, the site must have 0.05 m³ of stormwater storage.

Required storage $(m^3) = (impervious surface area in m^2) \times 0.05 metres$

Detention facility design details are outlined in Section 7.2.3.2 and Figure 7.2.

7.2.3.4 On-Site BMP Scenarios

To understand the implications of implementing the on-site BMP requirements we have developed various scenarios for different development types. *Figure 7.5* shows a schematic of the proposed scenarios.

Scenario 1: Townhouse

A portion of City Centre may consist of medium density housing such as townhouses. To assess using BMPs within this setting we have assumed a 9 m x 21 m lot with 80% imperviousness. The pervious areas should be required to contain sufficient soil/landscaping to detain the 32 mm that falls upon it. The driveway and outdoor patio could be constructed of pervious or impervious pavement. They would have an infiltration facility (gravel trench or plastic retention chambers) below them. The roof runoff is directed to the driveway and patio and allowed to infiltrate below. There would be an overflow to the standard drainage system.

It is important to note that although roof runoff is not contaminant free it is relatively clean in comparison to street runoff. Given that there are no highly sensitive groundwater sources in proximity to City Centre, it should be acceptable to infiltrate roof runoff without significant treatment. Some form of basic treatment such as a screen will prevent blockages within the infiltration facility, improve its performance and prolong its service life.

Scenario 2: High-Rise Residential/Commercial

A significant portion of City Centre will consist of high-rise residential and commercial buildings. To assess using BMPs within this setting we have assumed a 30 m x 30 m lot with 80% imperviousness. The pervious areas contain sufficient soil/landscaping to detain the 32 mm that falls upon it. The runoff from the impervious areas (roof) could be dealt with in the following ways.

- Option A: A green roof covers the entire roof top which is designed to retain a minimum of 32 mm;
- Option B: The runoff from the roof is directed to the pervious pavers at grade with an infiltration basin. The infiltration basin must contain approximately 500 mm of soil to provide sufficient storage; or
- Option C: Provide 36 m³ of detention on-site ((30 m x 30 m x 0.8) x 0.05m)).

A summary of the proposed on-site BMP requirements and how they would look in a high-rise development setting is provided in *Appendix C*.

7.2.4 Riparian Habitat Protection

The fourth City Centre servicing objective is the protection of riparian habitat and support of aquatic life along the watercourses. By addressing the second and third objectives there is a reduced impact on the water courses. Maintaining or improving water quality will ensure that fish are able to survive. Control of flows so that that erosion occurs at a natural rate and can potentially be managed for the protection of property and of the riparian areas.

The riparian area adjacent to creeks requires protection from loss due to development and due to human activity. The City is developing measures and policies to address this concern. The .Riparian Area By-law is being prepared by the City to clarify how to best protect these areas.

7.2.5 Recommended Servicing System

The City has constructed infrastructure works to address the safe conveyance for the 100 year event throughout the City Centre area, therefore, the following servicing system is recommended:

- All sites to meet the basic servicing requirements of the Design Criteria Manual
- On-site to include BMPs to control runoff volume and flow (2 year event);
- Developer's Architect to design the on-site BMPs as part of the site development process to ensure early incorporation of the works into the site design.
- The City to design and have constructed water quality facilities to remove solids and improve water quality from the stormwater runoff before discharging into Quibble and Bolivar Creeks; and
- Development to follow or exceed the Riparian Area By-law requirements.

	•	•			•	•		•	•	
		•				•		•	•	
DO NOT SCALE THIS DOCUMENT.	•	·				·		•	•	
ALL MEASUREMENTS MUST BE OBTAINED FROM STATED DIMENSIONS.	•							•		
22008 EARTH TECH (CANADA) INC. ALL RIGHTS RESERVED. THIS DOCUMENT IS PROTECTED										
OR FOR ANY PURPOSE EXCEPT WITH THE WRITTEN PERMISSION OF EARTH TECH (CANADA)		·				·		•	•	
SEEN ASSIGNEDS AS ACCOM (ALCOM) OR A PART TO WINGTH S COPTING THAT AS	А					•		•		
DOCUMENT WITHOUT AECOM'S EXPRESS WRITTEN CONSENT.	I/R	YY/MM/DD	ISSUE/REVISION DESCRIPTION	DRN	снк	DES	ENG	IDR	APP	

7.3 Infrastructure Costs and 10-Year Servicing Plan

The components of the servicing strategy for City Centre are:

- Treat road runoff before discharging it into Quibble Creek and Bolivar Creek and tributaries;
- Require on-site BMPs, as outlined in Section 7.2.3, which control the volume and rate of runoff from individual sites;
- Establish a 30 metre setback from top of bank for all development adjacent to Quibble Creek and Bolivar Creek and tributaries; and
- Implement the green street designs as provided in the Transportation Part of this Plan.

7.3.1 Capital Costs

Outlined below are the capital costs for implementing the Off-site and On-site BMP measures. These costs do not include maintenance costs.

Proposed New Measure #1 - Water quality treatment for all on-street runoff

The recommended approach to treating road runoff within the City Centre area is to place large vortex separators at the downstream end of each sub-catchment, before the water is discharged to Bolivar Creek or Quibble Creek. We identified seven sub-catchments which capture over 95% of the runoff from the City Centre Area. The estimated cost of purchasing and installing seven vortex separators, which are sized to meet the BC Water Quality Criteria for Aquatic Life, is \$1.7 million. It is recommended that the devices be installed within the next ten years and that the City budget for annual inspection and cleaning at each of the installation sites.

The vortex separators are development cost charge (DCC) eligible infrastructure because they service catchment areas greater than 20 hectares in size.

Proposed New Measure #2 – On-site BMPs

As shown in *Figure 7.5* we have presented three scenarios for implementing on-site BMPs. The capital cost for developments with the desired BMPs for each of the scenarios is presented below. The cost estimates listed below include the base paving, roofing and landscaping costs. The life cycle costs are not shown and no adjustment are included for benefits unrelated to drainage and water quality.

•	Option 1: Townhouse	\$13,000
•	Option 2A: High-rise with green roof	\$120,000

• Option 2B: High-rise with impermeable roof \$50,000

The cost estimate for Option 1 includes the cost of pervious pavement, an Infiltration basin with associated catch basin and observation well, and additional soil for landscaping. If the resident chose to install a chamber rather than pervious pavement with an infiltration basin then the cost would also be approximately \$13,000.

The cost estimate for Option 2A includes the cost of a green roof, pervious pavers and additional soil for landscaping. It is important to note that the cost of a green roof doesn't consider other the benefits of a green roof; namely its use as an amenity space, a reduction in heating and air conditioning needs, an extension in the life of the roof, and its aesthetic value. In some cases, an intensive green roof may be required for amenity space, resulting in little or no additional cost to provide the necessary stormwater benefits.

The cost estimate for Option 2B includes the cost of pervious pavement and infiltration basins with associated catch basins and observation wells.

7.3.2 10 Year Servicing Plan

The City has already invested almost \$7,000,000 over the past 12 years in upgrading the existing drainage system servicing the City Centre area (**Table 7.1**).

The following four local system upgrades projects (Table 7.3) have yet to be constructed to support the ultimate development, and are included in the 2014 – 2023 10 Year Servicing Plan for future localized system upgrades. These projects are in the 10 year plan because larger capacity is required for servicing or because the pipes require replacement. These are not eligible for DCC rebates as they do not service a catchment of 20Ha or greater.

10 Year Plan ID	Location	Length (m)	Prop. Dia. (mm)	Total Cost	DCC Amount
6412	140St: 105-105A Ave	172	450 & 600	\$119,200	\$11,920
11638	140 St: 104 – 106 Ave			\$250,000	-
11662	Grosvenor Rd-111A Ave: 136 St-Brentwood Cr			\$355,753	-
11640	132 St: 104 – 108 Ave			\$592,843	-

Table 7.3 Local system upgrades

To complete the list of projects for the stormwater servicing strategy, it is recommended that the City include the design and installation of the six water quality systems in the current 10 Year Servicing Plan (See Table 7.4).

Table 7.4 Water Quality Treatment Locations

Site	Location	Watershed	Total Cost	DCC Amount
1	Old Yale Rd at King George Blvd	Quibble	\$245,000	\$245,000
2	102 Ave at King George Blvd	Quibble	\$245,000	\$245,000
3	100 Ave at Whalley Blvd	Quibble	\$245,000	\$245,000
4A	96 Ave at 135 St	Quibble	\$245,000	\$245,000
4B	96 Ave at King George Blvd	Quibble	\$245,000	\$245,000
5	108 Ave at 133A St	Bolivar	\$245,000	\$245,000
6	King George Blvd at Ravine Rd	Bolivar	\$245,000	\$245,000

The City has advanced the area servicing works, and is currently completing the review and design of the water quality facilities, the works were completed using city wide development cost charge (DCC) funding. Developers will only be responsible to complete local servicing that is required to service their development if it precedes routine replacement or the natural progression of building that would have upgraded the existing pipes to the current design criteria.

The trunk drainage servicing for the area is fully funded through general DCC and once the water quality systems are completed, the area trunk servicing will be substantially complete.

APPENDIX C: STORMWATER DETAILS

- ² On-Site BMP Details
- ² Surrey City Centre On-Site Stormwater Management Requirements
- ² Worksheet for Landscaping and On-Site Detention Requirements
- ² Stormwater Management Typologies and Strategies

C1. On-Site BMP Details

ВМР	Priority 1 Infiltration	Priority 2 Evapo- transpiration	Priority 3 Detention	Reference
Absorbent Landscape	Х	Х		1,2
Infiltration Swale System	Х			1,2
Infiltration Rain Garden	Х	Х		1,2
Pervious Paving	Х			1,2
Green Roof		Х	Х	1,2
Infiltration (or Soakage) Trench	Х			1,2
Soakaway Manhole/Catch Basins	Х			1,2
Detention Vault			Х	2
Planters – open-bottomed with infiltration	Х	Х		1
Planters – closed (no infiltration)		Х	Х	1
Rainwater Harvesting	Х			2
Rooftop Detention			Х	2

1. GVS&DD Stormwater Source Control Design Guidelines 2005

2. MMCDA Green Design Guideline Manual 2005

SURREY CITY CENTRE On-site Stormwater Management Requirements

Step 1

Infiltrate the stormwater run-off to the maximum extent possible.

For each square metre of impervious* surface area, there must be 0.5 m3 of infiltration material (i.e. top soil, gravel trench etc.).

*Please note that for an area to be considered pervious it must be in its natural state or have sucient top-soil and vegetated cover to mimic pre-development inltration rates. If you are not able to infiltrate the entire site please proceed to Step 2.

Step 2

Use landscaped areas (including green roofs) to store and reduce run-off through evapotranspiration.

Proceed to Step 3 to determine storage requirements.

Step 3

Provide storage for run-off that is not addressed through infiltration or evapotranspiration.

For each square metre of landscaped surface, from which the run-off is not infiltrated, the site must have 0.02 m3 of stormwater storage. For each square metre of impervious surface, from which the run-off is not infiltrated, the site must have 0.05 m3 of stormwater storage.

Scenario #1

Office based complex - 1 ha (i.e. 125 m x 80 m)

- No infiltration possible due to underground parking
- 25% of site is covered with planters/green roof
- 75% of site is impervious

Volume (V) of stormwater storage required:

V=10,000 m2 *25% *0.02 m3 +10,000 m2*75%*0.05 m3

V=50m3 +375m3=425 m3

Water could be stored in gravel based planters bordering one side of the property as shown below.

Surrey City Centre Development Mitigation

	Not to be used for areas outside the City Centre GLUP	Input	1	Instruct	ions: Provide the values for the cells highlighted in Green
A	Total Site Area	6132	m²		
U	Protected Undisturbed Area	0	m²	0%	
D	Total Disturbed Area Calculated	6132	m²	100%	
PI	Pervious Landscaping (over native soil)	1200	m²	20%	
S _d	Topsoil Depth In Pervious Landscaping (over native soil)	550	mm		Max 450mm unless designed.
Pp	Pervious Surfaces (over native soil)	134	m²	2%	
l _i	Landscaping (min 75 mm growing media over impervious)	584	m²	10%	
L.	Impervious (no landscaping)	4214	m²	69%	

Summ	ary of Topsoil and Detention Requirements	
Stage 1	Infiltration Provided	
		3
Тp	Topsoil Provided (S _d x P _l)	660 m ²
l _t	Area of impervious surface treated with topsoil $(T_p/0.5)$	1320 m ²
l,	Area of impervious surface not mitigated with topsoil (I_c-I_t)	2894 m ²
Stage 2	Detention Required	
DI	Detention for Landscape over Impervious (0.02 x l _i)	12 ^{m³}
D _c	Detention for Untreated Impervious areas (0.05 x l,)	145 m ³
Dt	Total Detention required (D _i + D _c)	156 m ³

Stage 3	Detention Accomplished	
Dt	Total Detention required (D _I + D _c)	156 ^{m³}
Sde	Average soil depth in landscape over impervious*	0.3 m
Sd	Soil detention over impervious (avg. depth * 0.1 * area)**	18 m ³
D%	Percentage of Impervious (non landscape) availible for mitigation measures***	66 %
Di	Area of opportunuties for detention over impervious***	2781 m2
Md	Average depth of materials ****	0.05 m
Dit	Engineered detention over impervious	139 m ³
Stage 4	Deficit Calculations	
Dtot	Total Detention provided over impervious	157 m ³
Ddef	Detention deficit*****	0 m ³

1.8 l/s

* while 75mm is minimum, average depth by BCLNA standards will be greater, and can likely average 300mm.

** assumes 1mm detention per 10mm of soil.

Allowable Discharge rate is 3 l/s/ha

*** areas where slab drains could be held high (ie/ 25mm or 50mm), use of drainage mat, additional crushed gravels for detention.

Number does not necessarily equal total non-landscaped impervious, due to potential strucutural cost implications, but could, in theory.

**** depth of detention over impervious

***** goal is that this number reaches ZERO, otherwise alternatives to be undertaken, including on site tanking.

Note: this spreadsheet is for evaluation only, it requires the addition of a site figure showing the proposed layout, sections and landscape details before it can be used as an engineering design tool. The spreadsheet is only to be used for City Centre as an aid for design. It is not meant as a design standard or a submission item. It is assumed that anyone using this spreadsheet understands its benefits and limitations of the spreadsheet and is not relying on the above numbers as proof for a servicing strategy. As of this date the values in this spreadsheet have not been confirmed or approved for use and are only provided for information. This spreadsheet is a work in progress

Storm Water Management Typologies and Strategies

For Developments in Surrey City Centre and Emerging Urban Neighbourhoods

contents

Part one: Understanding urban runoff Part two: Storm water typologies Part three: Precedents Part four: Stormwater strategies Part five: Complying with Surrey Standards Part six: Appendices

presentation prepared by van der Zalm + associates Inc.

Understanding of the water cycle has developed over the past few decades. Water quality in measured in runoff volumes, pollutant levels, and discharge rates had allowed municipalities and governments to better understand the effects that storm water has on our environments.

Past to Present

Traditional design and planning in urban environments relied heavily on infrastructure with little or no on-site storm infiltration.

This created stresses on storm water systems and degraded downstream natural environments from increased pollutant runoff and volumes of water.

The high amounts of darkly paved surfaces in urban areas also dramatically increased the heat in their environments due to the low reflective properties, causing "**the heat island effect**".

The increased heat and pollutant concentration in urban areas also resulted in an increased potential for smog and poor air quality through evapotranspiration.

In Stream Corridor Restoration: Principles, Processes, and Practices (10/98).

By the Federal Interagency Stream Restoration Working Group (FISRWG) (15 Federal agencies of the U.S.)

Present and Future

Traditional design of urban storm water management is based on medium to maximum rain events anticipated for areas ranging anywhere from 2 to 200 year storm events. Designers have recognized the benefits of increasing site permeability and infiltration to manage day-to-day rainfall to decrease stresses on storm systems and extended environments. The present and future focus of stormwater design involves management of the majority (or all) storm water within a site.

Benefits of increased site permeability and infiltration design can include:

- Improved site aesthetic with additional soft landscaping and textured surfaces
- · Decreased runoff rates of storm that lead to -
- Increased removal of site pollutants and suspended solids through the natural processes of soils and -
- Increased concentration time of site storm water for groundwater recharge or plant absorption

Several methods of rating initiatives to remediate storm water management include:

- LEED Sustainable Sites credits and Water Efficiency credits
- LID (Low Impact Development) measures Green Globes Built Green

Developers can work with these systems in coordination with City of Surrey bylaws to develop storm designs that better suit community goals and sustainable living.

Stormwater Planning: A Guidebook for British Columbia Ministry of Water, Land and Air Protection, 2002

What is Surrey Doing for Stormwater?

Surrey encourages design professionals and developers to use ISMP's (Integrated Stormwater Management Plans), Best Management Practices (BMP's) and LID (Low Impact Development) practices wherever possible.

With Surrey being the fastest growing city in British Columbia, it is important that the City develops at an equal or better standard of storm water management as Canada's other largest municipalities. Much of the development occuring now will set a precedent for decades to come.

What are other big cities doing?

AN ECONOMIC RATIONALE

Vancouver is continuously amending it bylaws to incorporate increased green standards for achieving its goal of being the greenest city by 2020. For example, in July 2010 it was declared that there will be new green requirements for all rezoning applications recieved as of January 31, 2011. The requirements include that LEED Gold or Built Green Gold standards are applied to developments.

⊂onedav

Toronto established the Green Development Standard in 2006 as a means of influencing the quality of developments for the ultimate goal of an 80% reduction in Green House Gases by 2050. Stormwater strategies play a key role in this effort, as standards are outlined for development at the low-rise non residential, low-rise residential, and mid-high rise forms of development.

part two: storm water typologies

permeable concrete permeable asphalt permeable pavers open pavers Materials range from open grid 100-150mm thick slab 60mm - 100mm thick slab Pavers range in size - usually hard unit pavers to plastic grass 80mm+ thick for surfaces that grid pavers. **Hardscape Surface Applications** 11% of finished slab mixture A percentage of the finished are driven on and 50mm - 60mm is open air for easy infiltration. slab mixture is open air for easy thick for surfaces that are only Commercial schemes Base material for infiltration is walked on. Stone aggregates typically range infiltration. Stone aggregates New housing developments key and should be determined from 10mm to 14mm in size. typically range from 10mm to by a civil engineer for runoff Retail parks 14mm in size. Base material for infiltration is and infiltration capacity (usually Base material for infiltration is key and should be determined •Car parks 150mm to 350mm) depending key and should be determined Binders and lower courses by a civil engineer for runoff Government and Community on existing site soils i.e.) clay by a civil engineer for runoff usually contain a higher stone and infiltration capacity (usually **Buildings and Facilities** soils require more base material and infiltration capacity (usually 150mm to 350mm) depending on aggregate size of 14mm to under slabs, silty gravel soils 150mm to 350mm) 20mm. existing site soils i.e.) clay soils require less. require more base material under Base material for infiltration is slabs, silty gravel soils require Base material is usually a Consult with the project civil combination of a clear crush top key and should be determined Tip: Permeable hardscapes less. engineer and landscape contain a layer of drain rock course and road mulch lower by a civil engineer for runoff that functions like a reservoir architect for selection of the Optimal for and infiltration capacity (usually course. Pavers come in a variety of colour (approximately 33% void up to 6% most appropriate type of 150mm to 350mm) depending on options - some may aide in space). Calculations can be slopes paver application and base The lighter colour of the concrete existing site soils i.e.) clay soils reducing the heat island effect made to determine the amount preparation. can reduce impacts of the heat require more base material under available storage. For example, island effect. slabs, silty gravel soils require about 60mm of storm water can be store in approximately less. 180mm of base course. The use of asphalt increases the heat island effect.

hardscape surfaces

www.vdz.ca/resources.php

part two: storm water typologies

www.v

hard surface drainage

	exfiltration types	assisting components	cisterns & storage tanks	irrigation
Hardscape Surface Applications Commercial schemes New housing developments Retail parks Car parks Government and Community Buildings and Facilities 	 full exfiltration 100% on site infiltration Can occur with the use of softscape surface drainage systems partial exfiltration Infiltration on site with overflow to storm line Often achieved through a "systems" approach using perforated pipes or open collecting systems embedded in soft surface drainage Pipe connections to storm outfall are solid Domplete discharge to storm line This type of exfiltration is more traditional to storm designs and is avoided on LEED projects and newer infrastructure (unless necessary) 	 oil interceptors Used to remove hydrocarbons left by vehicles or sources of pollution Can help filter water before discharge Are often implemented as a "back-up" to soft surface storm remediation designs Are usually included in storage tanks and central manholes Soakaway pits Are composed of a buried catch basin or storage tank for deep infiltration focal point for areas where there is no discharge to storm In areas where discharge to storm is used, soakaway pits may be used as final infiltration tactic prior to water reaching an overflow within the catch basin with discharge	Works with full and partial exfiltration civil designs. Cisterns and storage tanks are used for a combination of reasons: 1) storage of storm water during intensive rainfall events where the partial or full systems may not perform at the desired rate 2) storage of storm water from hard surfaces for long-term groundwater recharge 3) storage of storm water from hard surfaces for drip or low emitter irrigation of plantings	 Iow emitter Includes the use of low-flow nozzles for a reduction in water consumption or the use of drip- emitters from collected storm water Additional supporting fabrics or bas-materials may be used in planters in coordination with a low use irrigation system to maintain water levels for plants Xeriscape Is an emerging trend to significantly reduce reliance on non-natural water cycles for plant consumption Xeriscaping planting puts focus on working with plants that are capable of handling a climates natural water cycles that can thrive without aide from irrigation Native plants are often used in these scenarios for their existing adaptability to a climate
ww.vdz.ca/resources.php	1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

part two: storm water typologies

rain gardens ponds swaling elements green roofs Pieces of landscape wider than dentention ponds extensive bio-swales 2m with the capacity to infiltrate · Ponds that are created for short Usually 150mm or shallower for Usually 2m wide and more than **Softscape Surface Applications** large volumes of water and growing medium depth 6m long support semi-wet ecosystems Commercial schemes Roof carries lighter load Swaled to have a minimum 12" Rain gardens are intended for Water is absorbed for shorter depth (this is often the maximum New housing developments deeper infiltration of storm water periods of time allowable depth in municipalities) Retail parks and remediation of pollutants for infiltration of storm water · Plantings used should meet •Car parks beds for easier maintenance Swales can be grassed or anticipated water levels for vegetated Government and Community summer and winter months -· Swales can contain either **Buildings and Facilities** great consideration of species partial or full exfiltration Streetscapes and promenades should be considered depending on their area - Rain gardens contain a slightly perforated pipes may be used elevated point of outfall; often · Sand bedding lavers. concealed through rip-rap or xeriscape compacted stones, and boudlering used to stabilize side and native alternative material are used to intensive plantings where walls create permeability and structure • More than 150mm of growing applicable medium and requires additional infiltration strips / layers of protection • Intended for longer range trenches consumption and absorption of • Pieces of landscape narrower water than 2m that contain growing medium and prepared sub-bases LITETOP' SO for infiltration UNIT GRISCH OPD • Their sub-structures resemble STURE INT CONCINU bio-swales but they can appear less obvious at the surface level

www.vdz.ca/resources.php

soft surface drainage

term storage of storm water for infiltration Infiltration channels are often used in the in centre of the pond for collect of sediments into drv

retention ponds

· Ponds that a created for longer term storage of storm water for deep infiltration and remediation

· These ponds usually have alteast 1m of water depth and can support small wetland environments

 Aerators and other devices may be used to provide good circulation an prevent algae blooms
bringing it all together: integrated systems

part two: storm water typologies

The most important thing a municipality or developer can do to ensure good storm management is make sure all consultants are coordinated.

To have understanding of the finer details and cross-over between respective scopes of work will play a key role in allowing consultants to select the most appropriate materials for sites and design systems to be **synchronized**.

For example, review of the images on right shows collection of roof rainwater into a splash block retainer that flows through an open system and a curb cut in the sidewalk, into a rain garden. The crossover between the building and the raingarden would have likely included **coordination** of the architect, landscape architect, mechanical engineer. Design of the rain garden would have likely included coordination between the landscape architect and civil engineer.

www.vdz.ca/resources.php

Remember: The ultimate goal of a storm design is performance and longevity.

It's how water flows through various site elements as a system that will determine the long term benefits and success of the project.

bringing it all together: integrated systems

part two: storm water typologies

Examples of integrated systems which show crossover between consultants. **Good storm water management can be integrated** into urban areas to add art, character, and expression to buildings and streetscapes.

bringing it all together: integrated systems

part two: storm water typologies

Concepts for storm management can include anything from small scale details of curb cuts through large scale expansive green roofs.

LEED Gold: peace arch visitors centre

Fast Facts

www.vdz.ca/resources.php

• Project site was one of the first muncipal buildings required to meet LEED Gold Standards

part three: precedents

- The tourism building visitors centre is located between Highway 99 South and an existing golf course at the border crossing
- The site stretches over 300m long with all storm water collecting into permeable concrete, open bio-basins, and a continuous bio-swale for infiltration

• The project site was the first location in Canada to test an Eco-media product - a compound created by soil scientists with the aim of providing soils with naturally occurring bacteria which break down hydrocarbons and pollutants that run off from vehicles

The revolutionary storm water system for collecting and carrying water earned the project LEED points for:

- Water efficient landscaping the entire site has no irrigation and is thriving
- Reduction in heat island effect the introduction of tree cover and permeable concrete met the requirements of using highly reflective materials and producing a 30% canopy cover over 5 years
- Sustainable site credits were earned for reducing the rate and quantity of runoff along with removal of phosphorus and hydrocarbons from site runoff to comply with LEED percentages
- Innovation in design credits were earned for implementing a signage program that teaches visitors about the unique design approach for managing and remediating storm water

I III

Rendering provided by van der Zalm + associates Inc.

LEED Gold: peace arch visitors centre

DESIGN APPROACH / NARRATIVE STEP TWO STEP THREE STEP FOUR STEP EIVE STEP ONE The 6" thick porous concrete slab immediately infiltrates the storm water. Water The blo-basins located infront of each parkin Should an excess amount or All excess storm water that cannot be Water hits the impervious asphalt drive alsie and runs at a 1% slope into the porous concrete slab for infiltration. stall sit slightly low in the landscape to intentionally collect excess water that exists a water build up In the blo-basins then water can Inflitrated in the other phases will eventual permeate into the blo-swale for final ontinues to permeate through the slab and 12" sub-base (composed of clear crush and $\frac{3}{4}$ minus rock). Water captured in this area during a short rain fall will evaporate or eventually drain in the adjacent blo-basins for further infiltration. Some water will the surface of the hardscape in the parking lot filter into a 4" perforated PVC absorption and remediation. plpe that flows under the permeate into the existing clay solls underneath the slab as part of the natural ground Native xeriscape plants (ferns, vine maples, sidewalk at a mild 1% slope. Large amounts of TSS and TP removal w vater cycle of the site. and bearberry) can handle wet and dry occur through reactions to both the Water exiting the pipes will then filter through a thin cover 500mm(+/-) depth of the Ecomedia® soil and the natural absorption of densely conditions and will absorb a large amount of If water were to completely fill the porous concrete area during a major storm event, then excess water that collects at the surface of the porous slab traverse across a 1% storm water. of drain rock into a densely slope Into the adjacent blo-basin. planted vegetation. Some TSS and TP remediation will also occ In this phase as plants will absorb these item planted swale containing the Ecomedia® soil product. The The swale is approximately 200m long and Note: Some TSS and TP removal will also occur in this phase of the storm water management, particularly during average rainfall events where the slab is likely to hold a large quantity of storm water and release it over time via infiltration and evaporation. through capillary action as part of the natura water will be remediated via flows at 0.25% surface slope allowing for sphate cycle uptake by plants or processes encurred by the Ecomedia® water to collect and flow slowly, promoting Infiltration and absorbtion. Habitat logs are VIEW OF TYPICAL HABITAT LOG ENVIRONMENT product placed strategically at low points in the swale to decrease water velocity and ncrease infiltration/remediation time. REFER TO STEP 5 DESCRIPTION HWY aa EXISTING PEACE PORTAL GOLF COURSE -2000mm(+/-) Blo-swale-Permeable Concrete Veblcular Parking 1500mm Sidewalk 2% 1% -Asphalt Drive Alsle -2250mm Parking Island-Refer to civil drawings 1% Relocated fence now against property line to maxmize swale width (typ). 100mm min. erforated pipes sit slightly proud in between top landscape and can be easily snake of concrete and top for maintenance. Pipes are capped Perforated Pipe to be concealed by drain rock and filter fabric to of soll (typ) vent clogging. prevent backlogging of system Swale bottom contains native iris and juncus species, Swale edges Swate buildin Contain analyse in a and junces species. Swate suges contain native grasses, spreading ground covers, and vhines, All plants specified for swate are SP4 size or #1 pot size ensure that the number of installed plants were maximized; thus maximizing area for natural capillary action of TSS and TP absorption of plants. Sandbag walls topped with Deltalok planting bags. Sandbags will aid I Infiltration of storm water. Deltalok bags will providing growing opportunity for plants which will aid in TSS and TP removal. Growing medium to be Yardworks supplied Ecomedia® product -Blo-basin--Sand -Torpedo Stone Rendering provided by (Vine maple trees, bearberry edges, and various fern inner plantings) G Perforated Pipe (1% Slope) —Drain rock 450 van der Zalm + associates Inc. www.vdz.ca/resources.php

part three: precedents

www.vdz.ca/resources.php

LEED Gold: peace arch visitors centre

LEED' Sustainable Sites A different kind of storm system

This project employs a revolutionary storm drainage system. Rainwater carrying oils and other pollutants from the roadway is transferred into the ground through pervious concrete under each parking stall. The water flows into the swale, where a special soil mixture has been developed specifically for this project - the first time this has been done in Canada. Bacteria in this soil mixture consume the pollutants in the storm water, and most of the water is dispersed into the soil rather than continuing into the storm sewer.

LEED Platinum: vancouver convention centre

part three: precedents

Fast Facts

• The West building features a unique marine habitat, a sophisticated drainage water and recovery

system, and a seawater heating and cooling system.

• The West building's six-acre living roof – the largest in Canada and the largest non-industrial living

roof in North America – features more than 400,000 indigenous plants and grasses as well as four

beehives. Drainage and recovery systems are designed to collect and use rainwater for irrigation

during summer months.

• The West building has received LEED (Leadership in Energy and Environmental Design) Platinum

certification and is the first convention centre in the world to earn the highest LEED rating.

(facts provided by vancouverconventioncentre.com)

Water is infiltrated through both the hard and soft surfaces of the site. The 6 acre crossing green roof is the focus of the architectural expression of the building, while surrounding hardscape pedestrian paths and plaza areas all collect storm water runoff for reuse through irrigation.

LEED Gold: **"Atwater Place"** Portland Oregon

www.vdz.ca/resources.php

This mixed use development achieved LEED Gold. Storm water integrated landscaping served as a central promenade to the entire development.

LEED Gold: **"Atwater Place"** Portland Oregon

site stormwater: City of Surrey Standards

part four: stormwater strategies

The goal for developments in Surrey is to provide:

0.5m3 of topsoil for every m2 of developmentand/or25 - 50mm of detention where landscape areas are provided

There are numerous way to achieve this goal within landscaping and civil design through the approach of creating **integrated systems**. Opportunities for creating integrated systems are numerous and vary in costs. The following slides represent some of the basic strategies for creating integrated systems, with examples seen on a variety of scales.

Recommendations to Developers and Committees

There are a number of ways to address site storm water when starting a project. The ultimate goal of a good storm water design is that it functions as a natural system within the site and does not conflict or fight natural process of both design and environmental features. The requirement of 25-50mm of detention or 0.5m3 of growing medium per square meter of development means that 70 - 90% of the MAR (Mean Annual Rainfall) on a local site can be infiltrated without overflow to storm.

The challenge for consultants and developers is to provide intelligent, responsive, an effective storm water solutions on site to deal with the majority of the MAR while still having the ability to overflow during a 5 year major storm event. This can be particularily challenging when dealing with high-density developments in the City Centre where existing sites are flat and surrounding road infrastructure is in place.

site stormwater: Project start-up

Stormwater Planning: A Guidebook for British Columbia Ministry of Water, Land and Air Protection, 2002

Sands and gravels

Sandy loams

Silty loams

Clay loams

Clays

> 50 mm/h

10 - 50 mm/h

5-40 mm/h

2-5 mm/h

<2 mm/h

Distribution of Annual Rainfall Volume (Sardis)

Tip: The minimum soil depth for 60mm of infiltration in a soil with good hydraulic conductivity is 300mm. Soils are able to store approximately 20% of their volume as soil water. Therefore 60mm x 5 = 300mm.

site stormwater: Project start-up

part four: stormwater strategies

www.vdz.ca/resources.php

Recommendations for addressing storm design at the start of a project include:

1. During the rezoning phase and site servicing phase of a development, examine the existing storm infrastructure and determine what options are available for overflow diversion of storm water. Gather the main consultants impacted by storm design (i.e. civil engineer, landscape architect, and architect) into a meeting. Ask the team questions such as:

a) What elevations are the surrounding site/street storm overflows located at?

b) Based on existing site grades; would surface level drainage (i.e. raingardens, ponds) be able to overflow to these lines in the event of a 5year storm? What would their maximum depth be before they became too deep for positive overflow drainage?
c)Would sub-surface drainage systems (i.e. storage tanks, infiltration trenches) be able to overflow to the site/street mainline during the event of a 5year storm? What would their overflow grade need to be set at?

2. The discussion generated by the questions in recommendation #1 should allow the consultants to determine early on what areas of a site should be considered for storm water infiltration. The is critical beacause it plays a role in what areas should be protected from the building location and gives the team a rough idea about where the majority of site storm water infiltration can occur.

3. In the Development Permit Process having an idea about where the majority of storm water can be infiltrated on a site can allow designers to make extended recommendations (i.e., that pervious paving be used to accomodate the majority of infiltration, or that it may be beneficial to limit underground parking to a certain area to allow room for storm storage tanks). The continued "systems" approach of enforcing all consultants coordinate with one another during this phase is a developers prime opportunity to also have an understanding of cost options prior to submitting a project for a permit.

Townhomes:

Because units are smaller and already interconnected it is easy to find ways to manage site storm water on a unit to unit basis. This may be done with rain chains, bio-swales, and small amounts of permeable hardscape. Partial exfiltration systems can be used to connect overflow from each unit into a large network for managing site storm water. It is also possible to propose some off-site improvements through offering to develop rain gardens, infiltration strips, or bio-swales along streetscape boulevards for increased community benefit.

Boulevard with curb cuts for street storm water collection. Landscape to have xeriscape plantings and evergreen canopy trees for absorption. Boulevards can have bio-swales for storm infiltration prior to overflow to storm

Landscaped front yard with raingardens or bio-swales along perimeter

Raised planters with low emitter or drip irrigation for xeriscape plants. Downspouts or rain chains can direct a portion of storm water into bio-swales

Permeable paving for infiltration with piping to raingardens for short term detention and reduction in site discharge

site stormwater: townhomes

site stormwater: apartments

part four: stormwater strategies

Apartments:

Buildings generally range from 2 to 12 floors for apartments. The aesthetic of building (i.e. whether it is tiered with planters and patios or straight vertical) depends on the site so we won't comment on verticality here. What can be said about apartments is that there is a guaranteed larger surface area of continuous hardscape needed to provide site parking. This is the key area for managing site runoff and pollutants generated on site - the use of permeable paving, bio-swales, infiltration strips or rain gardens could all be considered for creating integrated systems for collection and remediation of stormwater.

Bio-filtration through a series of planters and swales create streetscape interface and define areas of privacy

Curbless bio-swales for bio-infiltration. Evergreen shade trees for continued absorption of water.

Permeable paving in key areas of parking or mixed use designated zones to separate spaces and provide centralized infiltration

> Central rain garden infiltration feature functions as site signage for apartment at drop-off. Permeable paving can drain into rain garden through partial exfiltration

High rises:

This form of building often incorporates mixed-use developments as requires large amounts of community open space and semi-public open space. Parking is often offered in various forms such as off-street, temporary, private, and underground to manage volumes of residents and visitors. Larger amounts of permeable paving, stepped slabs, and green roofs are all ways of considering how to manage site storm water in highly urban environments. Green roof applications for collection of rain water can be used for grey-water recycling for site irrigation and to reduce amounts of runoff

Infiltration trenches can collect and support ground water recharge alongside areas with tree cells

Permeable paving strips can infiltrate and direct water to landscape areas for longer term infiltration and absorption

High-rises:

Areas of high impervious coverage in highrise or high-density developments can become challenging to design when trying to balance project affordability. However the more synchronized a storm water strategy is, the easier it is to achieve the desired outcomes.

The graphic shown right illustrates how on a typical high-density site (85% lot coverage), as little as 7.5% of the remaining lot area could reduce runoff volumes to about 10% of the totall rainfall (where soils have good hydraulic conductivity greater than 13mm/h) or about 60% of the total rainfall (where soils have poor hydraulic conductivity of about 1mm/h).

Stormwater Planning: A Guidebook for British Columbia Ministry of Water, Land and Air Protection, 2002

Infiltration Facility Performance (Runoff Volume Reduction) 85% lot coverage (e.g. high density multi-family) Hvdraulic 100 North Surrey Rainfall Conductivity of Volume of Runoff from Lot 90 Local Soils (wet year, 1733 mm annual rainfall) total rainfall) 0 0 0 0 0 08 Very Low (1 $\leftarrow \rightarrow$ mm/h) Affordability Low (2.5 Threshold mm/h) Medium (13 £ Feasibility mm/h) 30 Infiltration Facility Type Threshold 2 bioretention facility with 150 mm of 20 High (50 mm/h ponding depth on top of 1000 mm of 10 absorbent soil No Source 0 Control 10 15 20 25 n 5 % of Lot Used for Infiltration Figure 7-15a

site stormwater: highrises

The following charts were prepared by the EPA Office of Water during a study on Low Impact Developments for large retail facilities. The recommended best management practices listed could also apply to regular buildings. These charts could be printed as a quick list for generating ideas for how to manage site storm water at the start-up of a project.

www.vdz.ca/resources.php

site stormwater: quick list

Types of Best Management Practices

BMP	Circulation and Parking	Building	Loading
Cisterns		x	
Conservation (Vegetation)	x		
Downspout Disconnection		X	
Filter Strips	x		
Infiltration Beds/Trenches or Dry Wells	x		
Pocket Wetlands			
Porous Pavement	×		
Rain Gardens	x		x
Reforestation (Vegetation)	х		
Sand Filters	x		x
Soil Amendments	x	-	
Vegetated Roof	1	x	
Water Conservation		X	
Pollution Prevention			x
Tree Box Filters	x		x
Bioretention Slopes	x	-	x

New Developments vs. Retrofits

BMP	New Development	Retrofit
Cistems		
Conservation (Vegetation)		0
Downspout Disconnection	0	
Filter Strips		
Infiltration Beds/Trenches or Dry Wells	•	۲
Pocket Wellands		
Porous Pavement	•	۲
Rain Gardens	•	
Reforestation (Vegetation)	•	
Sand Filters		
Soil Amendments	•	
Tree Box Fillers		
Vegetated Roofs	•	
Vegetated Swales		

ley: ● Highly Suitable ④ Moderately Suitable 〇 Not Suitable

site stormwater: costs and maintenance

part four: stormwater strategies

Surface and Sub-surface Drainage

The term surface facility refers to features that infiltrate storm water at the surface level (i.e. rain gardens, bio-swales, and storm water ponds). The term sub-surface facility refers to features that infiltrate storm water below the surface level (i.e. trench drains and soakaway pits). Site specific elements such as topogrpahy, scale and soil type affect the scale and design of an infiltration facility. Facilities can range from \$30 - \$170 per m2. The operation and maintenance of surface level facilities are more frequent but less expensive than sub-surface facilities. The operation and maintenance of surface facilities are unique in that they also serve an aesthetic fucntion (i.e. maintenance of landscape plantings). Annual costs for surface facilities usually cost between 5-10% of capital costs. Cost for sub-surface facilities are less frequent but cost more money (i.e. cleaning of soakaway trenches), resulting between 5-20% of the total annual capital costs.

Absorbant Landscaping

Depending on soils depths and plant type, absorbant landscaping can range from \$25 to \$70 per m2. The lower range of \$25 is inclusive of a typical grass setting with approximately 150mm of soil for the grass and tree canopy. The higher end of the range is more typical of shrub bed plantings which include a minimum soil depth of 450mm.

Pervious Paving

The cost of pervious paving ranges from \$200-300 per m2 depending on the design and required amount of base material. This can be 2 to 3 times the cost of regular paving which is \$50 - \$100m2. There are also unique maintenance requirements for this form of paving such as vaccuum sweeping. It is highly recommended that developers are encouraged to locate sources of maintenance equipment and have an understanding of their material costs when determining storm water approaches in the design phase of a project.

Working with the Storm Water Mitigation Calculator

www.vdz.ca/resources.php

site stormwater: real world examples

Step One: Once a concept plan for a site is developed, complete cells in green on the excel chart to see how initial landscaping (on slab and over the native site) manages site storm water.

In these following scenarios, the total site area is defined by the property line and is graphically shown with the red dashed line (-----). The total disturbed area of the site requiring storm water mitigation remains the same as shown in **vellow**.

Calculate the areas of soft-landscape according to **slab** vs. **non-slab** conditions. On the excel chart this is defined as **non-native** vs. **native** Once totals have been entered, place in total areas of native vs. non-native landscaping in the excel chart to calculate what percentage of the site's area is being infiltrated and what percentage remains impervious.

Note: This initial step is intended to give developers a quick "snap shot" of how much area is left that needs to be diverted into pervious surfaces (either additional soft landscapes, storage units, or pervious hardsurfaces).

Definition of mitigation for Surrey:

The requirement of 25-50mm of detention or 0.5m3 of growing medium per square meter of development means that 70 - 90% of the MAR (Mean Annual Rainfall) on a local site can be infiltrated without overflow to storm.

Step Two: In step two areas identified in **green** may be altered with to understand what percentage's of soft landscaping or pervious hardsurfaces are needed to achieve the "detention deficit" of "0".

Step two functions as the developer's cost-benefit analysis - it allows developers to weigh the costs of soft landscape areas against the costs of hard surfaces areas needed for storm water mitigation. Growing medium depths, aesthetics, and material type are all impacted during the design development of a site. Using this tool as a cost-benefit analysis will enable developers and consultants to make conscientious decisions about the site design that respects the requirements of storm water mitigation and economics of the development.

Areas shown in yellow will auto-update in step two everytime areas in green are changed. Consult with the project Landscape Architect and Civil Engineer to understand more about pervious hardsurface options and soil requirements of plants to ensure that green entries are realistic.

Note: Step two functions as a way to work with soil depths, pervious hardscape storage, and other means to determine how much of the remaining impervious area needs to become pervious to completely mitigate storm water. The "detention deficit" must reach "0" in step two in order to prove site mitigation meets Surrey's requirement or the site must recieve storage tanks, etc to comply.

site stormwater: real world examples

SERVICE ROAD planting over existing (native) site (47m2 total) Building has green roofs on multiple levels 137 ST. to add to development count on non-native site development planting over slab (1476m2 total) limit of underground parking (development over non-native site a.k.a. slab) (development over native site) property line (total site area = 4635m2)

part five: Complying with Surrey standards

Surrey City Centre Development Mitigation: Highrise Mixed-Use Development

	•	Input		
A	Total Site Area	4635	m ²	
U	Protected Undisturbed Area	0	m ²	0%
D	Total Disturbed Area Calculated	4635	m²	100%
PI	Pervious Landscaping (over native soil)	47	m²	1%
S _d	Topsoil Depth In Pervious Landscaping (over native soil)	450	mm	
Pp	Pervious Surfaces (over native soil)	0	m²	0%
I _I	Landscaping (min 75 mm growing media over impervious)	1476	m²	32%
l,	Impervious (no landscaping)	3112	m ²	67%

site stormwater: real world examples

Surrey City Centre Development Mitigation: Highrise Mixed-Use Development

		Input	1	Instruct	ions: Provide the values for the	cells highlighted in Green
А	Total Site Area	4635	m²			
U	Protected Undisturbed Area	0	m²	0%		
D	Total Disturbed Area Calculated	4635	m²	100%		
PI	Pervious Landscaping (over native soil)	47	m²	1%		
S _d	Topsoil Depth In Pervious Landscaping (over native soil)	450	mm		Max 450mm unless designed.	
Pp	Pervious Surfaces (over native soil)	0	m²	0%		
l _i	Landscaping (min 75 mm growing media over impervious)	1476	m²	32%		
l _c	Impervious (no landscaping)	3112	m²	67%		
Summ	ary of Topsoil and Detention Requirements					
Stage 1	Infiltration Provided					
T,	Topsoil Provided (S _d x P _l)	21.15	m³	1		
l _t	Area of impervious surface treated with topsoil (T _o /0.5)	42.3	m ²			
l,	Area of impervious surface not mitigated with topsoil $(I_c\text{-}I_t)$	3070	m²			
Stage 2	Detention Required					
			3	1		
	Detention for Landscape over Impervious (0.03 x k)	74	m ³	-		
D _c	Tetel Detention for Uniteded Impervious areas (0.02 x I _F)	61	m ³	-		
Dt	Total Detention required (D ₁ + D _c)	135				
	Allowable Discharge rate is 3 l/s/ha	1.4	l/s			
Stage 3	Detention Accomplished					
Dt	Total Detention required (D ₁ + D _c)	135	m°			
Sde	Average soil depth in landscape over impervious*	0.5	m			
Sd	Soil detention over impervious (avg. depth * 0.1 * area)**	74	m³	J		
D%	Percentage of Impervious (non landscape) availible for mitigation measures***	39.5	%			
Di	Area of opportunuties for detention over impervious***	1229	m2			
Md	Average depth of materials ****	0.05	m			
Dit	Engineered detention over impervious	61	m³			
Stage 4	Deficit Calculations					
Dtot	Total Detention provided over impervious	135	m³			
Ddef	Detention deficit****		m ³			

* while 75mm is minimum, average depth by BCLNA standards will be greater, and can likely average 300mm

** assumes 1mm detention per 10mm of soil.

*** areas where slab drains could be held high (ie/ 25mm or 50mm), use of drainage mat, additional crushed gravels for detention.

Number does not necessarily equal total non-landscaped impervious, due to potential strucutural cost implications, but could, in theory **** depth of detention over impervious

***** goal is that this number reaches ZERO, otherwise alternatives to be undertaken, including on site tanking

site stormwater: real world examples

part five: Complying with Surrey standards

Surrey City Centre Development Mitigation: Low-rise Multi-family Development

		Input		
A	Total Site Area	6132	m²	
U	Protected Undisturbed Area	0	m²	05
D	Total Disturbed Area Calculated	6132	m²	100
PI	Pervious Landscaping (over native soil)	1200	m²	209
Sd	Topsoil Depth In Pervious Landscaping (over native soil)	550	mm	
Pp	Pervious Surfaces (over native soil)	134	m²	25
I _I	Landscaping (min 75 mm growing media over impervious)	584	m²	109
l _c	Impervious (no landscaping)	4214	m²	699

site stormwater: real world examples

Surrey City Centre Development Mitigation: Low-rise Multi-family Development

		Input	1	Instruct	tions: Provide the values for the cells highlighted in
A	Total Site Area	6132	m²]
U	Protected Undisturbed Area	0	m²	0%	5
D	Total Disturbed Area Calculated	6132	m²	100%	6
PI	Pervious Landscaping (over native soil)	1200	m²	20%	
S _d	Topsoil Depth In Pervious Landscaping (over native soil)	550	mm		Max 450mm unless designed.
Pp	Pervious Surfaces (over native soil)	134	m²	2%	6
l ₁	Landscaping (min 75 mm growing media over impervious)	584	m²	10%	6
l.	Impervious (no landscaping)	4214	m²	69%	
Summ	ary of Topsoil and Detention Requirements				
Stage 1	Infiltration Provided				
Tp	Topsoil Provided (S _d x P _l)	660	m ³	1	
I,	Area of impervious surface treated with topsoil (Tp/0.5)	1320	m²		
l,	Area of impervious surface not mitigated with topsoil $(I_{c} \cdot I_{t})$	2894	, m²		
Stage 2	Detention Required				
D	Detention for Landscape over Impervious (0.02 x I,)	12	m³	1	
Dc	Detention for Untreated Impervious areas (0.05 x l _r)	145	m³		
Dt	Total Detention required (D ₁ + D _c)	156	m³		
	Allowable Discharge rate is 3 l/s/ha	1.8	l/s		
Stage 3	Detention Accomplished				
Dt	Total Detention required (D ₁ + D _c)	156	m		
Sde	Average soil depth in landscape over impervious*	0.3	m	1	
Sd	Soil detention over impervious (avg. depth * 0.1 * area)**	18	m³		
D%	Percentage of Impervious (non landscape) availible for mitigation measures***	66	%		
Di	Area of opportunuties for detention over impervious***	2781	m2		
Md	Average depth of materials ****	0.05	m		
Dit	Engineered detention over impervious	139	m³		
Stage 4	Deficit Calculations				
Dtot	Total Detention provided over impervious	157	m³		
Ddef	Detention deficit****	C	m ³		
				-	

* while 75mm is minimum, average depth by BCLNA standards will be greater, and can likely average 300mm. ** assumes 1mm detention per 10mm of soil.

*** areas where slab drains could be held high (ie/ 25mm or 50mm), use of drainage mat, additional crushed gravels for detention. Number does not necessarily equal total non-landscaped impervious, due to potential strucutural cost implications, but could, in theory.

**** depth of detention over impervious

***** goal is that this number reaches ZERO, otherwise alternatives to be undertaken, including on site tanking.

site stormwater: real world examples

Surrey City Centre Development Mitigation: **High-rise Multi-family Development** Instructions: Provide the values for the cells highlighted in Green Input Total Site Area One Protected Undisturbed Area Total Disturbed Area Calculated Pervious Landscaping (over native soil) 43% Step Topsoil Depth In Pervious Landscaping (over native soil) Max 450mm unless designed Pervious Surfaces (over native soil) 5% Landscaping (min 75 mm growing media over impervious) 9% 4347 m² Impervious (no landscaping) 429 Summary of Topsoil and Detention Requirements Step Two Stage 1 Infiltration Provided Topsoil Provided (S_d x P_i) 2032.2 m 4064.4 m² Area of impervious surface treated with topsoil ($T_p/0.5$) Area of impervious surface not mitigated with topsoil (I,-I,) 283 m² Stage 2 Detention Required Detention for Landscape over Impervious $(0.02 \times I_{\rm I})$ Detention for Untreated Impervious areas (0.05 x I.) 14 m Total Detention required (D₁ + D_c) 34 m³ Allowable Discharge rate is 3 l/s/ha Stage 3 Detention Accomplished Total Detention required (D₁ + D_c) Average soil depth in landscape over impervious* Soil detention over impervious (avg. depth * 0.1 * area)** 30 m Percentage of Impervious (non landscape) availible for mitigation measures** Area of opportunuties for detention over impervious*** Average depth of materials **** 4 m³ Engineered detention over impervious Stage 4 Deficit Calculations 34 m³ tot Total Detention provided over impervious 0 m³ Ddef Detention deficit***** * while 75mm is minimum, average depth by BCLNA standards will be greater, and can likely average 300mm.

** assumes 1mm detention per 10mm of soil.

*** areas where slab drains could be held high (ie/ 25mm or 50mm), use of drainage mat, additional crushed gravels for detention. Number does not necessarily equal total non-landscaped impervious, due to potential strucutural cost implications, but could, in theory.

**** depth of detention over impervious

***** goal is that this number reaches ZERO, otherwise alternatives to be undertaken, including on site tanking

site stormwater: real world examples

part six: appendices

National Agencies and Non-profit Links

The Canadian Green Building Council www.cagbc.ca

The US Environmental Protection Agency http://www.epa.gov/owow_keep/NPS/index. html

The Green Roofs for Healthy Cities Coalition www.greenroofs.ca

Provincial and Municipal Links

Stormwater Planning: A guidebook for British Columbia http://www.env.gov.bc.ca/epd/epdpa/mpp/ stormwater/stormwater.html

Rain and Drain Simulator http://www.sustainabilityinmybackyard.ca/ home

Water Bucket http://www.waterbucket.ca

The Water Balance Model http://bc.waterbalance.ca

Surrey Storm Water http://www.surrey.ca/ city-government/4706.aspx

resources & links

Research and Learning

http://www.perviouspavement.org/

http://www.cement.ca/en/Parking-Lots/ Pervious-Concrete.html

http://www.concretenetwork.com/pervious/

general suppliers

part six: appendices

Permeable Concrete

LaFarge Canada http://www.lafarge-na.com

Sustainable Concrete Canada http://www.sccanada.net/

Permeable Pavers

Aquapavers http://www.aquapave.com/

Unilock Pavers http://www.unilock.com/Products/ Pavers/Permeable

Grass Grid http://www.landscapesupply.com/ products/main.php?cat_id=610

Eco-grid http://www.terrafirmenterprises.com/

Storm Infrastructure Supplies

Nilex http://www.nilex.com/

Corix http://www.corix.com/

Green Roofs & Living Walls

G-Sky Green Walls and Roofs www.gsky.com

Mubi Green Walls www.mubi.ca

Roofscapes Inc www.roofmeadows.com

Tecta America www.tectaamerica.com

Soils & Plants

Eco-media Soils www.yardworkssupply.ca

BCLNA www.bclna.com

A-2.2

Consultant Report

SANITY SEWER

6 Sanitary Infrastructure

The Surrey City Centre area includes approximately 550 ha of land and is generally bound by 132 Street to the west, 140 Street to the east, 112 Avenue to the north and 96 Avenue to the south. The City of Surrey has updated their City Centre Plan, which predicts a dramatic increase in population that will place additional demands on the existing sanitary sewer infrastructure, and will ultimately exceed the capacity of many existing pipelines and the existing capacity at the Quibble Creek pump station.

The purpose of this study is to assess the impacts of the anticipated growth within City Centre and the associated increase in sanitary demands on the existing network and provide recommendations for network improvements taking into account network hydraulics and anticipated costs.

The City provided the City Centre Land Use Plan as the basis for the analysis, as shown in *Figure 6.1*. The study area is divided into two basic sanitary catchment areas by the local topography, as shown in *Figure 6.2*. The northern City Centre catchment is collected by gravity and flows into the Greater Vancouver Sewerage and Drainage District (GVS&DD) North Surrey Interceptor. The southern City Centre catchment is collected by gravity at the Quibble Creek Pump Station and pumped to a trunk main in the northern catchment, which in turn flows into the GVS&DD North Surrey Interceptor. Both catchments discharge to the regional system at 132 Street and 114 Avenue.

This study estimates sanitary flows for development conditions under five scenarios and identifies what sanitary infrastructure upgrades will be necessary to support development in this area. These scenario horizons are:

- Existing (2013);
- Year 2023;
- Year 2033;
- Year 2043; and,
- Build Out Year 2083 (Sewer Equivalent Build Out).

The Surrey Planning and Development Department split City Centre into four projected growth areas (see Appendix A), and predicted what percentage of each area would develop under each of the five scenarios. The corresponding number of units and jobs was then used to develop the sewer model.

The Sewer Equivalent Build Out, represents the full development saturation scenario for City Centre sewer demands and is recommended for sanitary sewer sizing due to the long service life, and high installation costs of installing sewer infrastructure.

Existing studies and information utilized in the development of this report included:

- City Centre Land Use Plan;
- City of Surrey geodatabase;
- GIS shape files of City sanitary sewer network and pump stations;
- GIS shape files of the City's legal parcels;
- City of Surrey Design Criteria Manual 2004;
- City of Surrey November 28, 2012 Engineering Bulletin: Design of Sanitary Sewer System Components;
- City of Surrey Topographic information; and
- ASCE Manual and Report on Engineering Practice No.60.

Terms and Definitions

Table 6.1 provides a summary of key terms (with abbreviations) and definitions used throughout this report.

Key Term (and Abbreviation)	Definition
Average Dry Weather Flow (ADWF)	The lowest 24-hour average sanitary flow value during a 7-day period of dry weather. The sanitary flow is comprised of base sanitary flow plus groundwater infiltration (ADWF = BSF + GWI).
ASCE Manuals and Reports on Engineering Practice 60	American Society of Civil Engineers Manual of Practice No. 60 for Gravity Sanitary Sewer Design and Construction.
Base Sanitary Flow (BSF)	All wastewater flow from residential, commercial, industrial and institutional sources that the sanitary sewer system is intended to carry. (BSF = ADWF – GWI).
Diurnal Pattern	Pattern describing the variance in sewage flows over a day,
Groundwater Infiltration (GWI)	Groundwater infiltration that enters the sanitary sewer system during dry weather periods; through breaks, cracks, misaligned joints, tree root punctures and manhole joints and covers. In general, GWI = 70% - 85% of minimum night-time flow.
Metro Vancouver(MV)/ GVSⅅ	Regional District whose trunk system collects all sewage from the City, and neighbouring municipalities, and conveys it to a treatment facility.
Hydraulic Grade Line (HGL)	The maximum level of water in the pipe system, calculated as the height that liquid will rise in a piezometer using the Bernoulli's Equation.
Inflow	Stormwater that enters the sewer through direct connections (i.e. CB leads or roof drains connected to the sanitary sewer).
Inflow and Infiltration (I&I)	The total inflow and infiltration that enters the sanitary sewer system from all sources, equal to GWI + RDII.
Peak Dry Weather Flow (PDWF)	Peak instantaneous sanitary flow value during dry weather conditions (peak of the diurnally varying BSF plus GWI).
Peak Wet Weather Flow (PWWF)	Maximum instantaneous sanitary flow value. It represents all flow contributions carried by the sanitary sewer system (equals PDWF + RDII).

Table 6.1	Key Terms a	nd Definitions
-----------	-------------	----------------

Rain Dependent Inflow and Infiltration (RDII)

All stormwater inflow (see above) into the sanitary sewer system plus increase in GWI that occurs directly due to the influence of rainfall.

Unit Conversions

Volume	Litres to gallons	3.79 Litres = 1.0 US gallon and 4.54 Litres = 1.0 Imp. gallon
HGL	Geodetic to MV Datum	0.0m Geodetic = MV Datum of 91.37 ft
Flow Rat	te <u>L/s</u> to <u>gpm</u>	1.0 L/s = 15.9 USgpm = 13.2 Imp. gpm

6.0 Existing & Future - Servicing Catchments & Details

6.0.1 Sanitary Population Summary

City Centre is expected to grow dramatically in residential, institutional, and commercial populations. This section identifies future populations as well as equivalent populations generated to determine sewage loadings. The origins of this information are provided in *Appendix A*. These populations were developed specifically for predicting future sewage loadings in City Centre and are not intended for other uses.

The study area is divided into two basic sanitary catchment areas by the local topography, as shown in *Figure 6.2*. The northern City Centre catchment is collected by gravity and flows into the Greater Vancouver Sewerage and Drainage District (GVS&DD) North Surrey Interceptor. The southern City Centre catchment is collected by gravity at the Quibble Creek Pump Station and pumped to a trunk main in the northern catchment, which in turn flows into the GVS&DD North Surrey Interceptor. Both catchments discharge to the regional system at 132 Street and 114 Avenue.

It is important to recognize that sewer catchments contributing to the sanitary network within the study area extend beyond the City Centre boundaries and are incorporated as part of this analysis. For the purposes of this report, populations within City Centre are identified as "Internal", and contributing catchments with residential and institutional land uses located adjacent to the City Centre boundary are identified as "External".

Some residential areas within the south west region of City Centre drain to sanitary sewers that are located outside of the City Centre boundary. To analyze these sewers it was necessary to consider additional catchments contributing flow to these pipes that are outside of City Centre. These catchments have been labelled as "External 2". External 2 existing and future populations were estimated with the same unit population densities as External 1. *Figure 6.2* graphically identifies the external and internal catchment areas.

The City provided internal residential population, residential units, and employment populations for each scenario horizon. Currently, there is no existing or foreseen future industrial land uses to occur within the study area and as such the population counts have been generated for residential, institutional and commercial (IC) land uses. Therefore, the following internal and external populations have been generated as follows:

Internal Populations:

- Residential populations were provided by the City based on staged growth predictions of development of the Land Use Plan (Appendix A). A population density of 3.75 people per single-family unit with a secondary suite at 1.93 additional people per single family residence was added to 38% of all single family homes in 2013, and 100% of all single family homes by 2023 and beyond.
- Commercial equivalent populations were generated using the City's unit rate of 18.6 m²/employee
 (200ft²/employee) applied to commercial floor space to determine the number of employees. Employees
 were converted to equivalent population by a factor of 0.27 as per the ASCE Manual and Report on
 Engineering Practice No.60. This factor is more refined than what is prescribed in the City's Design Criteria
 by including equivalent populations for offices.
- Institutional equivalent populations were generated based on the type of facility and projected occupancy. The rates for sanitary flows per unit type were extracted from the 2010 Sewer Model. Details for these facilities are provided in *Appendix A*. Institutional bed and student estimates were provided by the Fraser Health Authority and Surrey School District respectively. As per the City's 2004 Design Criteria Manual, an average dry weather flow (ADWF) of 350 l/c/d was used.

External Populations:

- The population external to the City Centre Plan area that contributes to flows into the sanitary pipe network is identified as External 1. As noted earlier, this area drains to sanitary sewers that are located outside of the City Centre boundary. Information for External 1 was provided by the City in the form of a total population evenly distributed over an identified service area (*Appendix A*). Population was then allocated to each lot by applying the unit population density to the area of contributing lots.
- An average population density determined from the external catchment information provided by the City, was applied to the lots in External 2 to estimate the residential population.
- External 1 was reported as having only institutional and residential land uses, and External 2 is exclusively residential.

Table 6.2 summarizes the total equivalent populations used in the sanitary sewer network analysis. Further details as to how equivalent populations for institutional have been generated are provided in **Appendix A** for each horizon year.

Horizon	Catchment	E	quivalent Popula	ation	Total Equivalent Population	Total Equivalent Population	
		Residential*	Commercial**	Institutional***		ropulation	
	Internal	33,812	6,368	2,239	42,419		
(2013)	External 1	5,645	0	1,907	7,553	50,951	
(2013)	External 2	980	0	0	980		
	Internal	52,442	7,471	2,758	62,671		
2023	External 1	9,203	0	2,159	11,362	75,561	
	External 2	1,528	0	0	1,528		
	Internal	71,858	8,730	3,290	83,878		
2033	External 1	11,217	0	2,436	13,653	99,393	
	External 2	1,862	0	0	1,862		
	Internal	92,106	10,190	3,376	105,672		
2043	External 1	11,217	0	2,620	13,837	121,371	
	External 2	1,862	0	0	1,862		
Build Out	Internal	160,599	15,274	3,927	179,800		
	External 1	11,217	0	3,587	14,804	196,466	
	External 2	1,862	0	0	1,862		

Table 6.2 Summary of Sanitary Populations by Horizon Year

* Residential equivalent populations based on residential populations provided by the City.

** Commercial equivalent populations based on employment populations provided by the City and applying a factor of 0.27 as per the ASCE Manual and Report on Engineering Practice No.60.

*** Institutional equivalent populations based on populations provided by the City, Surrey School District, and Fraser Health Authority.

6.0.2 Sanitary Flow

Sanitary flows for City Centre were determined as follows:

<u>ADWF</u>

Average dry weather flow (ADWF) was calculated as per the City of Surrey Engineering Department Design Criteria Manual (May 2004) based on a per capita sewage flow rate of 350 L/c/d and the populations determined in **Section 6.0.1**.

<u>PDWF</u>

A Harmon Peaking factor, calculated as per section 4.0 of the City of Surrey Engineering Department Design Criteria Manual (May 2004), was applied to the ADWF on a catchment by catchment basis to calculate peak dry weather flow (PDWF).

Inflow and Infiltration

Inflow and infiltration (I&I) rates for City Centre were provided by the City in the form of shape file titled City_Centre_Lots.shp that identifies I&I unit rates at the lot level. The shape file is based on monitoring results observed by the GVS&DD and the City. A map of I&I levels and their distribution is included as *Figure 6.3*.

I&I unit rates were applied to lot area to calculate I&I for individual lots. An additional 20% surcharge was added to the calculated I&I to account for road ways.

<u>PWWF</u>

Peak dry weather flow (PDWF) was combined with I&I on a catchment by catchment basis to calculate peak wet weather flow (PWWF).
6.1 Hydraulic Model Development

The City Centre sanitary hydraulic model was developed in Microsoft Excel utilizing attribute tables from the City's GIS database, performance criteria from the City of Surrey Engineering Department Design Criteria Manual (May 2004), and the flow rates identified in *Section 6.0.2*.

Sanitary Pipe Network

The sanitary pipe network attributes for City Centre were imported from the City's GIS database. Attributes imported included:

- Upstream invert;
- Downstream invert;
- Length; and
- Diameter.

As per the City of Surrey Engineering Department Design Criteria Manual (May 2004) the full pipe capacity for each pipe was calculated using the Manning equation. A Manning's coefficient of roughness n= 0.013 was applied to all pipes.

Sanitary Catchments

Sanitary sub-catchments were developed around block length manhole to manhole pipe segments. Lots connected to each pipe segment were identified as a sub-catchment and their flow was assigned to the pipe segment's upstream manhole. The total number of sub-catchments in the sanitary model is 283. A catchment map is provided as *Figure 6.4*.

The catchment assigned to each pipe segment included all sub-catchments upstream of the pipe segment plus any catchments attached to the pipe segment. Sanitary flows for each catchment were determined based on the populations and the sanitary flow information previously identified.

Lot attributes, including lot area and sanitary sewer connection location, were obtained from the City's GIS database.

6.2 Design Criteria & Analysis

6.2.1 Evaluation of Existing Sanitary Mains

Existing sanitary mains were evaluated for capacity based on the following criteria from the City of Surrey Engineering Design Criteria Manual (May 2004):

- Local sewers must not have a flow that exceeds 70% of full pipe capacity (Q_d/Q_f ≤ 0.70) or a depth exceeding 62% of the internal diameter of the sewer; and,
- Interceptor and trunk sanitary mains shall not have a flow that exceeds 83.6% of full pipe capacity (Q_d/Q_f ≤ 0.836) or a depth exceeding 70% of the internal diameter of the sewer.

6.2.2 Design Criteria for New Sewers

Design criteria for replacement or new sewers as per the City of Surrey Engineering Design Criteria Manual (May 2004, with updates) were as follows:

- Local sewers are designed as open channels with depth of flow, under maximum design flow conditions, not exceeding 50% of full pipe capacity ($Q_d/Q_f \le 0.50$) or a depth exceeding 50% of the internal diameter of the sewer;
- Interceptor and trunk sewers are designed such that flow under maximum design flow conditions does not exceed 83.6% of full pipe capacity (Q_d/Q_f ≤ 0.836) or have a depth that does not exceed 70% of the internal diameter of the sewer;
- Minimum sewer sizes are:
 - 200 mm diameter for single family residential lands, and all other zoned lands with less than 90 ppha,
 - 250 mm diameter for non-residential zones, residential zones, and all other zoned lands equal to or more than 90 ppha,
 - Minimum sewer sizes above also applies to the frontal sewer for the development that has existing sewer,
 - For new extensions, no reduction in pipe size shall be made for pipes downstream, irrespective of grade provided on the pipe, unless specifically approved, in writing, by the Engineer;
- Nominal depth of sewers are to be between 2.0 meters and 3.5 meters;
- The terminal section of sanitary sewer, servicing 6 or less house service connections, shall have a minimum grade of 1.0%;
- A sanitary sewer, servicing the 7th to 12th house service connections, shall have a grade of 0.6% or greater;
- A sanitary sewer, servicing the 13th house service connection (or more), shall have a grade of 0.5% or greater; and
- Pipe grades less than 0.5% may only be used once peak wet weather flow produces a flow velocity in excess of 0.6 m/s, accounting for dynamics of partial pipe flow

6.3 Servicing Options & Proposed System

6.3.1 City Centre Sanitary Sewer Capacity Deficiencies

The design flow (Q_d) was calculated for each pipe in the City Centre sanitary pipe network for existing (2013), 2023, 2033 and 2083 Sewer Equivalent Build Out scenarios. The Q_d was compared to the full pipe capacity (Q_f) and evaluated against the design criteria. A summary of pipelines with identified hydraulic deficiencies is tabulated below in *Table 6.3* and is presented graphically in *Figure 6.5*.

Existing		2	023 (m)	2	033 (m)	20)43 (m)	B	O (m)
Pipe Diameter (mm)	2013 (m)	Phasing	Cumulative	Phasing	Cumulative	Phasing	Cumulative	Phasing	Cumulative
100	46	0	46	0	46	0	46	0	46
150	515	112	627	899	1,526	390	1,915	2,078	3,993
200	2,932	3,757	6,689	2,321	9,010	2,314	11,324	5,008	16,332
250	293	12	305	314	619	94	713	6	719
300	468	0	468	340	808	0	808	212	1,020
350	0	0	0	0	0	39	39	457	496
450	9	198	207	120	327	192	520	41	561
525	0	0	0	0	0	114	114	402	517
600	0	0	0	113	113	4	117	42	159
675	0	0	0	15	15	0	15	5	20
750	0	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0	0
TOTAL	4,264	4,079	8,343	4,122	12,465	3,147	15,612	8,253	23,864
Pump Stations and Forcemains	-	1 additional p Quibble	oump required at Creek PS	Twin 1,598 m mm forcema	n of existing 500 in with 675 mm		-	Twin 718 m of e forcemain w	xisting 600 mm ith 600 mm

Table 6.3 Sanitary Sewer Base Scenario Capacity Deficiencies

6.3.2 City Centre Sanitary Sewer Improvement Scenarios

A number of sanitary sewer diversion scenarios were developed and compared to the base option of simply upsizing pipes that become undersized in the future as per **Table 6.3**. The following includes a description of benefits accrued through the recommended diversions.

6.3.2.1 132 Street Diversion

This scenario diverts the sanitary gravity main on 132 Street into the sanitary gravity main on 104 Avenue. It avoids future capacity problems and associated improvements for 745 m of the sanitary gravity main on 132 Street north of 104 Avenue.

To accommodate the connection of the 132 Street gravity main the 104 Avenue gravity main must be lowered from 133A Street for 160 m west to 133 Street. These pipes are identified as requiring capacity upgrades in the future with or without the connection of the 132 Street gravity main, therefore the diversion project can financially "piggy back" on the capacity upgrade.

6.3.2.2 Hilton Road Diversion

The Hilton Road Diversion connects the sewers on Bentley Road between Hilton Road and 136 Street. This diversion allows the sewers on Hilton Road and Bentley Road to flow to the interceptor on King George Blvd via Bentley Road rather than the longer existing 136 Street route. The Hilton Road diversion reduces flows in the 136th Street gravity main, reducing the long term capacity improvements required for the 136th Street gravity main and those mains downstream of the 136th Street gravity main.

6.3.2.3 100 Avenue Diversion

The existing sanitary system includes a split flow manhole (# 6961) on 100 Avenue west of 138A Street. This split currently directs 75% of the flow to sanitary catchment N14 and 25% of the flow north to catchment N04. The split flow directed to sanitary catchment N14 is ultimately pumped by the Quibble Creek Pump Station into a gravity interceptor at 102 Avenue and City Parkway. The split flow directed to sanitary catchment N04 flows by gravity to the interceptor at 105A Avenue and University Dr.

The current flow split allows the City to avoid some pumping energy costs through utilization of the gravity network north of the split flow manhole. As flows increase due to growth, neither network will be able to accommodate the flow increase without significant improvements.

To address this, three sub-options for 100 Avenue were analyzed:

- 100% of flow to Quibble Creek Pump Station (Quibble Diversion);
- 100% of flow north by gravity to the sanitary interceptor (Northern Diversion); and
- 100% of flow to Quibble Creek Pump Station until 2029, then 100% of flow to the north (Northern Variant).

Due to higher capital costs (approximately \$0.5M), the Northern Diversion and Northern Variant were deemed less desirable than the Quibble Diversion option.

The existing Quibble Pump Station is currently equipped with 3 (2 duty and 1 standby) pumps and has room for one additional pump which will increase the capacity of the pump station. Pump and system curves are provided in *Appendix A*. An NPV analysis of the Base and Quibble Diversion options for the flow in the 100 Avenue main was also completed and it was found that the Quibble Diversion option offered both capital cost and NPV benefits.

6.3.3 Proposed System

It is recommended that the 132 Street Diversion, Hilton Road Diversion, and 100 Avenue Diversion (Quibble Diversion) scenarios outlined in **Section 6.3.2** are implemented. **Table 6.4** shows that the Recommended Option reduces the total length of sewer upgrades required by 2,619m and reduces the capital cost of required upgrades by approximately \$4.0M when compared to the Base Option.

Table 6.4 Scenario Comparison

Scenario	Total Length of Sewer Upgrades Required (m)	Capital Cost
Base Option	23,864	\$34,770,033
Recommended Option	21,245	\$30,723,541

*Does not include pump station costs

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency

Figures 6.6 – 6.11 show the recommended system upgrades for each of the phases of development and *Table 6.5* lists the corresponding gravity infrastructure costs by phase. All sewer capacity upgrade costs where predicted design flows are equal to or greater than 40L/s, and the incremental sewer main upsizing costs from the required base size, are DCC eligible costs.

Table 6.5 Gravity Infrastructure Costs by Phase

Phase	Total Length of Sewer Upgrades Required (m)	Capital Cost	DCC Eligible Cost
Existing	2,562	\$3,915,884	\$3,333,094
2023	3,281	\$5,060,106	\$3,522,612
2033	4,004	\$5,897,663	\$3,433,101
2043	2,996	\$4,366,724	\$3,126,228
Build Out	8,402	\$11,483,164	\$4,976,800
Total	21,245	\$30,723,541	\$18,391,835

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency

Table 6.6 lists the pump station and forcemain costs by phase. All pump station and forcemain costs are DCC eligible.

Recommended Improvements	Upgrade Year	Unit Cost	Capital Cost	DCC Cost
Add 1 – 225 L/s pump to Quibble Creek Pump Station (4 th Pump) for a firm capacity of 347L/s	2019	\$110,000	\$110,000	\$110,000
Twin 1,598 m of 500 mm diameter forcemain with 675mm diameter from the pump station along 94A Ave – 138 St ending at 100 Ave/Whalley Blvd.	2030	\$2,125	\$3,395,750	\$3,395,750
Twin 718 m of 600mm diameter forcemain with 600mm diameter at 100 Ave/Whalley Blvd -102 Ave – 102 Ave/City Pkwy.	2073	\$1,950	\$1,400,100	\$1,400,100
	\$4,905,850	\$4,905,850		

Table 6.6 Pump Station and Forcemain Costs by Phase

6.4 10 - Year Servicing Plan

DCC eligible projects total \$23,297,685. The pump installation in the Quibble Creek Pump Station is the only project included in the 2014 – 2023 10 Year Servicing Plan. It is recommended that all of the DCC eligible projects be included in future 10 Year Servicing Plans.

A detailed schedule of recommended sewer system improvements is tabulated in *Appendix A* including existing infrastructure description, new infrastructure description, estimated implementation date, cost, and 10 Year Servicing Plan Project ID number.

APPENDIX A: SANITARY DETAILS

- 2013 Population Horizon
- □ 2023 Population Horizon
- □ 2033 Population Horizon
- 2043 Population Horizon
- Build Out Year 2083 Sewer Equivalent Build Out Population Horizon
- □ 2013 Gravity Sewer Capacity Upgrades
- 2014 2023 Gravity Sewer Capacity Upgrades
- 2024 2033 Gravity Sewer Capacity Upgrades
- 2034 2043 Gravity Sewer Capacity Upgrades
- 2044 BO Gravity Sewer Capacity Upgrades
- DCC Eligible Gravity Main Projects
- DCC Eligible Gravity Main Upsizing Projects
- DCC Eligible Pump Station and Forcemain Projects
- □ Quibble Creek Pump Station System Curve
- □ Sanitary Sub-Catchments Load Assignment
- □ City Centre Projected Growth Areas for Development Staging Scenarios

A1. 2013 Population Horizon

Internal residential and commercial populations are generated as previously described in Part 6. Institutional facilities along with their population equivalence are listed in *Table 1*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	500 beds	900 L/bed/d	1,286
Laurel Place Retirement Home	191 beds	650 L/bed/d	355
Forsyth Road Elementary School	271 students	45 L/student/d	35
AHP Mathew Elementary School	426 students	45 L/student/d	55
Queen Elizabeth Secondary School	1435 students	90 L/student/d	369
Cherington Place Retirement Home	75 beds	650 L/bed/d	139
		Total =	2,239

Table 1 2013 Internal Institutional Sanitary Population Equivalent

External residential populations are generated as previously described in Part 6, and there is no commercial component. External institutional facilities are listed in **Table 2** with their population equivalents. For the existing Simon Fraser University (SFU), there are no residents living in this facility and only students and teachers are present. As such, the SFU population has already been accounted for in the 7.5 FAR where future residential and apartments may be built.

Table 2 2013 External Institutional Sanitary Population Equivalent

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Jim Pattison Outpatient Care & Surgery Centre	1,600 patients	125 L/patient/d	571
RCMP E-Division	3,000 employees	94.5 L/employee/d	810
Discovery Elementary School	104 students	45 L/student/d	13
KB Woodward Elementary School	475 students	45 L/student/d	61
Kwantlen Park Secondary School	1,495 students	90 L/student/d	384
Lena Shaw Elementary School	530 students	45 L/student/d	68
		Total =	1,907

Table 3 summarizes the 2013 existing sanitary populations for internal and external catchments.

Table 3 2013 Total Sanitary Equivalent Population

Category	Internal	External 1	External 2	Total
2013 Residential	33,812	5,645	980	40,437
2013 Commercial	6,368	0	0	6,368
2013 Institutional	2,239	1,907	0	4,146
2013 Total =	42,419	7,552	980	50,951

A2. 2023 Population Horizon

Internal residential and commercial populations are generated as previously described in Part 6. Internal institutional facilities along with their population equivalence are listed in *Table 4.*

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	650 beds	900 L/bed/d	1,671
Laurel Place Retirement Home	191 beds	650 L/bed/d	355
Forsyth Road Elementary School	350 students	45 L/student/d	45
AHP Mathew Elementary School	550 students	45 L/student/d	71
Queen Elizabeth Secondary School	1854 students	90 L/student/d	477
Cherington Place Retirement Home	75 beds	650 L/bed/d	139
		Total =	2,758

Table 4 2023 Internal Institutional Sanitary Population Equivalent

External residential populations are generated as previously described in Part 6, and there is no commercial component. Institutional facilities are listed in **Table 5** with their population equivalents. For the existing Simon Fraser University (SFU), there are no residents living in this facility and only students and teachers are present. As such, the SFU population has already been accounted for in the 7.5 FAR where future residential and apartments may be built.

Table 5 2023 External Institutional Sanitary Population Equivalent

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Jim Pattison Outpatient Care & Surgery Centre	1,830 patients	125 L/patient/d	654
RCMP E-Division	3,050 employees	94.5 L/employee/d	824
Discovery Elementary School	134 students	45 L/student/d	17
KB Woodward Elementary School	614 students	45 L/student/d	79
Kwantlen Park Secondary School	1,932 students	90 L/student/d	497
Lena Shaw Elementary School	685 students	45 L/student/d	88
	2,159		

Table 6 summarizes the 2023 sanitary populations for internal and external catchments.

Table 62023 Total Sanitary Population

Category	Internal	External 1	External 2	Total
2023 Residential	52,442	9,203	1,528	63,173
2023 Commercial	7,471	0	0	7,471
2023 Institutional	2,758	2,159	0	4,917
2023 Total =	62,671	11,362	1,528	75,561

A3. 2033 Population Horizon

Internal residential and commercial populations are generated as previously described in Part 6. Internal institutional facilities along with their population equivalence are listed in *Table 7*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	800 beds	900 L/bed/d	2,057
Laurel Place Retirement Home	191 beds	650 L/bed/d	355
Forsyth Road Elementary School	437 students	45 L/student/d	56
AHP Mathew Elementary School	686 students	45 L/student/d	88
Queen Elizabeth Secondary School	2,312 students	90 L/student/d	595
Cherington Place Retirement Home	75 beds	650 L/bed/d	139
		Total =	3,290

Table 7 2033 Internal Institutional Sanitary Population Equivalent

External residential populations are generated as previously described in Part 6, and there is no commercial component. External Institutional facilities are listed in **Table 8** with their population equivalents. For the existing Simon Fraser University (SFU), there are no residents living in this facility and only students and teachers are present. As such, the SFU population has already been accounted for in the 7.5 FAR where future residential and apartments may be built.

Table 8 2033 External Institutional Sanitary Population Equivalent

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Jim Pattison Outpatient Care & Surgery Centre	2,100 patients	125 L/patient/d	750
RCMP E-Division	3,100 employees	94.5 L/employee/d	837
Discovery Elementary School	168 students	45 L/student/d	22
KB Woodward Elementary School	765 students	45 L/student/d	98
Kwantlen Park Secondary School	2,408 students	90 L/student/d	619
Lena Shaw Elementary School	854 students	45 L/student/d	110
	2,436		

Table 9 summarizes the 2033 sanitary populations for internal and external catchments.

Table 92033 Total Sanitary Population

Category	Internal	External 1	External 2	Total
2033 Residential	71,858	11,217	1,862	84,937
2033 Commercial	8,730	0	0	8,730
2033 Institutional	3,290	2,436	0	5,726
2033 Total =	83,878	13,653	1,862	99,393

A4. 2043 Population Horizon

Internal residential and commercial populations are generated as previously described in Part 6. Internal institutional facilities along with their population equivalence are listed in *Table 10*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	800 beds	900 L/bed/d	2,057
Laurel Place Retirement Home	191 beds	650 L/bed/d	355
Forsyth Road Elementary School	488 students	45 L/student/d	63
AHP Mathew Elementary School	766 students	45 L/student/d	98
Queen Elizabeth Secondary School	2,581 students	90 L/student/d	664
Cherington Place Retirement Home	75 beds	650 L/bed/d	139
		Total =	3,376

Table 10 2043 Internal Institutional Sanitary Population Equivalent

No future residential population information is available for the external catchments beyond 2033. Therefore the 2033 external 1 and external 2 area residential populations were maintained as the Sewer Equivalent Build Out external residential populations. *Table 11* summarizes the external institutional populations. For the existing Simon Fraser University (SFU), there are no residents living in this facility and only students and teachers are present. As such, the SFU population has already been accounted for in the 7.5 FAR where future residential and apartments may be built.

Table 11 2043 External Institutional Sanitary Population Equivalent

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Jim Pattison Outpatient Care & Surgery Centre	2,300 patients	125 L/patient/d	821
RCMP E-Division	3,150 employees	94.5 L/employee/d	851
Discovery Elementary School	187 students	45 L/student/d	24
KB Woodward Elementary School	854 students	45 L/student/d	110
Kwantlen Park Secondary School	2,689 students	90 L/student/d	691
Lena Shaw Elementary School	953 students	953 students 45 L/student/d	
		Total =	2,620

Table 12 summarizes the 2043 sanitary populations for internal and external catchments.

Table 12 2043 Total Sanitary Population

Category	Internal	External 1	External 2	Total
2043 Residential	92,106	11,217	1,862	105,185
2043 Commercial	10,190	0	0	10,190
2043 Institutional	3,376	2,620	0	5,996
2043 Total =	105,672	13,837	1,862	121,371

A5. Build Out Year 2083 - Sewer Equivalent Build Out Population

Build Out Internal Population

For residential population, the Build Out internal population is based on FAR and areas from the City Centre Plan. The plan identifies floor area ratios (FAR's) for residential and commercial usage in City Centre. Residential floor space was converted to population based on the figures in **Table 13** below.

F.	AR	People Per Unit
Low	High	
0.6	0.6	3.75 (main dwelling) + 1.93 (secondary suite) = 5.68
2.5	2.5	2.8
>2.5	7.5	1.8

Table 13 Residential Occupancy Based on FAR

For some parcels, the residential or commercial populations were higher in the interim scenarios than in the Build Out scenario. In these cases, the highest residential population was added to the highest commercial equivalent population from any scenario to form the Build Out Scenario. The build out year is recommended for sanitary sewer sizing because of the long service life and high installation costs of sanitary infrastructure.

Institutional facilities along with their population equivalence are listed in *Table 14.* Institutional bed and student estimates were provided by the City and School District respectively. As per the City's 2004 Design Criteria Manual, average dry weather flow (ADWF) of 350 l/c/d was applied.

Table 14 Build Out Internal Institutional Sanitary Population Equivalent

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	800 beds	900 L/bed/d	2,057
Laurel Place Retirement Home	191 beds	650 L/bed/d	355
Forsyth Road Elementary School	813 students	45 L/student/d	105
AHP Mathew Elementary School	1,278 students	45 L/student/d	164
Queen Elizabeth Secondary School	4,305 students	90 L/student/d	1,107
Cherington Place Retirement Home	75 beds	650 L/bed/d	139
		Total =	3,927

For the existing Simon Fraser University (SFU), there are no residents living in this facility and only students and teachers are present. As such, the SFU population has already been accounted for in the 7.5 FAR where future residential and apartments may be built.

Build Out External Population

No future residential population information is available for the external catchments beyond 2033. Therefore the 2033 external 1 and external 2 area residential populations were maintained as the build out external residential populations. *Table 15* summarizes the external institutional populations.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Jim Pattison Outpatient Care & Surgery Centre	3,200 patients	125 L/patient/d	1,143
RCMP E-Division	3,200 employees	94.5 L/employee/d	864
Discovery Elementary School	312 students	45 L/student/d	40
KB Woodward Elementary School	1,425 students	45 L/student/d	183
Kwantlen Park Secondary School	4,485 students	90 L/student/d	1,153
Lena Shaw Elementary School	1,590 students	45 L/student/d	204
Τ	3,587		

Table 15 Build Out External Institutional Sanitary Population Equivalent

Build Out Total Sanitary Population

Table 16 summarizes the Sewer Equivalent Build Out sanitary populations for internal and external catchments.

Table 16 Sewer Equivalent Build Out Total Sanitary Population

Category	Internal	External 1	External 2	Total
Build Out Residential	160,599	11,217	1,862	173,678
Build Out Commercial	15,274	0	0	15,274
Build Out Institutional	3,927	3,587	0	7,514
Sewer Equivalent BO Total	179,800	14,804	1,862	196,466

A6. Existing Gravity Sewer Capacity Upgrades

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	132 St. Diversion, 104 Ave. at 132 St.	-	-	-	-	2013	57	250	\$1,313	\$74,813	\$74,813
-	Hilton Rd. Diversion, Bentley Rd. at Hilton Rd.	-	-	-	-	2013	39	450	\$1,763	\$68,738	\$68,738
-	100 Ave. (Quibble) Diversion	-	-	-	-	2013	-	-	\$3,000	\$3,000	\$3,000
-	100 Ave. at 140 St.	1000088338	200	PVC	1989	2013	22	300	\$1,413	\$30,911	\$30,911
-	100 Ave. at 140 St.	1000088339	200	PVC	1989	2013	102	300	\$ 1,413	\$144,312	\$144,312
-	100 Ave. at 140 St.	1000088340	200	PVC	1989	2013	119	300	\$ 1,413	\$167,382	\$167,382
-	100 Ave. at 140 St.	1000088341	200	PVC	1989	2013	21	300	\$1,413	\$ 29,265	\$29,265
-	100 Ave. at Whalley Blvd.	1000088319	250	AC	1966	2013	14	375	\$1,591	\$ 22,803	\$22,803
-	104 Ave. at 133 St.	1000089972	200	AC	1963	2013	91	375	\$1,591	\$145,240	\$145,240
-	104 Ave. at 133 St.	1000089973	150	AC	1963	2013	150	250	\$1,313	\$197,446	\$197,446
-	105A Ave. east of King George Blvd	1000092921	200	AC	1963	2013	51	375	\$1,591	\$ 80,878	\$80,878
-	105A Ave. west of City Parkway	1000089961	250	AC	1963	2013	98	450	\$1,763	\$171,868	\$171,868
-	111A Ave. at Bolivar Rd.	1000089773	200	VCP	1963	2013	29	250	\$1,313	\$ 38,378	\$38,378
-	112 Ave. at 132 St. Diversion	1000090487	300	AC	1963	2013	154	525	\$1,938	\$297,744	\$297,744
-	112 Ave. at 132 St. Diversion	1000090506	300	AC	1963	2013	46	525	\$1,938	\$89,128	\$89,128
-	112 Ave. at 135 St.	1000090508	200	VCP	1963	2013	115	375	\$1,591	\$ 182,208	\$182,208
-	112 Ave. at 135 St.	1000090509	200	VCP	1963	2013	118	300	\$1,413	\$166,028	\$166,028
-	132 St. at 114 Ave.	1000091431	450	CP	1973	2013	9	900	\$2,850	\$ 26,355	\$26,355
-	132 St. south of 96 Ave.	1000080224	200	AC	1973	2013	53	300	\$1,413	\$ 74,453	\$74,453
-	132 St. south of 96 Ave.	1000080225	200	AC	1973	2013	118	300	\$1,413	\$167,325	\$167,325
-	132 St. south of 96 Ave.	1000080226	200	AC	1973	2013	124	300	\$1,413	\$174,458	\$174,458
-	132 St. south of 96 Ave.	1000080227	200	AC	1973	2013	119	300	\$1,413	\$168,483	\$168,483
-	132 St. south of 96 Ave.	1000080228	200	AC	1973	2013	124	300	\$1,413	\$174,868	\$174,868
-	136 St. at 112 Ave.	1000089766	200	VCP	1963	2013	92	375	\$1,591	\$147,033	\$147,033
-	139 St. at 104 Ave.	1000092797	200	VCP	1963	2013	73	375	\$1,591	\$116,358	\$116,358
-	139 St. at 104 Ave.	1000092798	200	VCP	1963	2013	128	375	\$1,591	\$ 203,642	\$203,642
-	139 St. north of 104 Ave.	1000092794	200	VCP	1963	2013	123	375	\$1,591	\$195,447	\$195,447
-	Brentwood Crescent at Bentley Road	1000092938	200	VCP	1963	2013	102	375	\$1,591	\$162,778	\$162,778
-	City Parkway north of 105 Ave.	1000089727	150	AC	1963	2013	87	300	\$1,413	\$122,520	\$122,520

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	Grosvenor Road at Franklin Road	1000092957	200	VCP	1963	2013	111	375	\$1,591	\$176,455	\$176,455
-	Queen Elizabeth SS	1000080419	200	AC	1973	2013	73	250	\$1,313	\$95,567	\$95,567
		Total					2,562			\$ 3,915,884	\$ 3,915,884

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

A7.2014 - 2023 Gravity Sewer Capacity Upgrades

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Va	Present lue (3%)
-	108 Ave. at 132A St.	1000090181	250	AC	1963	2017	16	450	\$ 1,763	\$ 27,426	\$	26,628
-	132 St. north of 96 Ave.	1000082350	200	AC	1973	2017	108	300	\$ 1,413	\$ 152,065	\$	147,636
-	132 St. north of 96 Ave.	1000082351	200	AC	1973	2017	123	300	\$ 1,413	\$ 174,036	\$	168,967
-	139 St. at 108 Ave.	1000092793	200	VCP	1963	2017	130	375	\$ 1,591	\$ 206,538	\$	200,522
-	139 St. south of 96 Ave.	1000079824	200	AC	1974	2017	101	375	\$ 1,591	\$ 161,235	\$	156,539
-	Bentley Rd. at King George Blvd.	1000089791	150	VCP	1963	2017	153	450	\$ 1,763	\$ 270,368	\$	262,493
-	Queen Elizabeth SS	1000080207	200	AC	1973	2017	115	250	\$ 1,313	\$ 151,399	\$	146,990
-	100 Ave. at 143 St.	1000088420	200	AC	1972	2018	95	300	\$ 1,413	\$ 133,841	\$	126,158
-	100 Ave. at 143 St.	1000088421	200	AC	1972	2018	116	300	\$ 1,413	\$ 164,155	\$	154,732
-	108 Ave. at 132A St.	1000089597	250	AC	1963	2018	9	375	\$ 1,591	\$ 13,573	\$	12,794
-	Bentley Rd. at King George Blvd.	1000089789	300	PVC	2008	2018	43	525	\$ 1,938	\$ 83,700	\$	78,895
-	Grosvenor Road at Franklin Road	1000092452	200	VCP	1963	2018	89	375	\$ 1,591	\$ 141,929	\$	133,781
-	100 Ave. at 140 St.	1000088377	200	VCP	1972	2019	51	300	\$ 1,413	\$ 72,714	\$	66,544
-	112 Ave. at 132 St. Diversion	1000090507	300	VCP	1963	2019	114	450	\$ 1,763	\$ 201,792	\$	184,669
-	112 Ave. at 135 St.	1000091574	200	VCP	1963	2019	109	300	\$ 1,413	\$ 153,612	\$	140,577
-	132 St. north of King George Blvd.	1000091669	450	CP	1963	2019	92	675	\$ 2,338	\$ 215,078	\$	196,827
-	139 St. south of 96 Ave.	1000079819	200	AC	1973	2019	85	300	\$ 1,413	\$ 120,472	\$	110,249
-	Lane east of King George Blvd., south of 105A Ave.	1000092936	200	VCP	1963	2019	103	375	\$ 1,591	\$ 163,318	\$	149,459
-	132 St. north of King George Blvd.	1000091668	450	CP	1963	2019	62	675	\$ 2,338	\$ 143,957	\$	127,904
-	134A St. at 105A Ave.	1000089953	150	AC	1963	2019	97	250	\$ 1,313	\$ 126,791	\$	112,652
-	94A Ave. at 139 St.	1000079805	200	AC	1972	2019	61	300	\$ 1,413	\$ 86,078	\$	76,480
-	94A Ave. at 139 St.	1000079814	250	AC	1970	2019	12	375	\$ 1,591	\$ 19,491	\$	17,318
-	132 St. at Old Yale Road	1000082409	200	VCP	1963	2020	114	300	\$ 1,413	\$ 161,423	\$	139,245
-	141 St. at 101 Ave.	1000088410	200	VCP	1972	2020	86	300	\$ 1,413	\$ 121,066	\$	104,432
-	141 St. at 101 Ave.	1000088411	200	AC	1972	2020	69	300	\$ 1,413	\$ 97,110	\$	83,768
-	132 St. at Old Yale Road	1000082411	200	VCP	1963	2020	125	300	\$ 1,413	\$ 176,750	\$	148,025
-	100 Ave. at Whalley Blvd.	1000088321	250	PVC	1987	2020	6	300	\$ 1,413	\$ 8,302	\$	6,750
-	132 St. north of 96 Ave.	1000082353	200	AC	1973	2021	14	250	\$ 1,313	\$ 18,001	\$	14,210
-	132 St. north of King George Blvd.	1000859861	450	СР	1963	2021	16	600	\$ 2,113	\$ 34,206	\$	27,003
-	132A St. at 105A Ave.	1000089939	200	AC	1963	2021	134	300	\$ 1,413	\$ 189,787	\$	149,820
-	140 St. at 108 Ave.	1000092691	150	VCP	1963	2021	15	250	\$ 1,313	\$ 19,793	\$	15,624

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	111A Ave. and Brentwood Crescent	1000092942	200	VCP	1963	2022	108	300	\$ 1,413	\$ 152,256	\$ 116,692
-	140 St. south of 100 Ave.	1000088464	200	AC	1974	2022	98	300	\$ 1,413	\$ 138,995	\$ 106,528
-	141 St. at 102 Ave.	1000088408	200	VCP	1972	2022	99	250	\$ 1,313	\$ 129,911	\$ 99,566
-	King George Blvd. at 108 Ave.	2	375	PVC	2013	2022	52	600	\$ 2,113	\$ 109,956	\$ 84,272
-	Queen Elizabeth SS	1000080208	200	AC	1973	2022	71	250	\$ 1,313	\$ 93,635	\$ 71,764
-	100 Ave. east of 143 St.	1000088419	200	AC	1972	2023	79	250	\$ 1,313	\$ 104,270	\$ 77,587
-	132 St. north of 96 Ave.	1000082397	200	AC	1973	2023	32	250	\$ 1,313	\$ 42,579	\$ 31,683
-	132 St. north of King George Blvd.	1000091667	450	CP	1963	2023	90	600	\$ 2,113	\$ 189,918	\$ 141,317
-	132 St. north of King George Blvd.	1000091670	450	CP	1963	2023	44	600	\$ 2,113	\$ 93,142	\$ 69,307
-	135A St. at 107A Ave.	1000089923	200	AC	1963	2023	73	300	\$ 1,413	\$ 103,145	\$ 76,749
-	141 St. south of 102 Ave.	1000088409	200	VCP	1972	2023	63	250	\$ 1,313	\$ 82,215	\$ 61,176
-	Grosvenor Rd. at 108 Ave.	1000092961	150	AC	1963	2023	7	300	\$ 1,413	\$ 10,075	\$ 7,497
		Total					3,281			\$ 5,060,106	\$ 4,431,827

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

A8. 2024 – 2033 Gravity Sewer Capacity Upgrades

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	102 Ave. at 139 St.	1000088544	200	AC	1972	2024	69	300	\$ 1,413	\$ 97,980	\$ 70,783
-	112B Ave. at 132 St.	1000090503	300	AC	1963	2024	30	450	\$ 1,763	\$ 53,528	\$ 38,670
-	112B Ave. at 132 St.	1000090504	300	AC	1963	2024	124	450	\$ 1,763	\$ 218,379	\$ 157,761
-	130 St. south of 108 Ave.	1000089879	200	VCP	1963	2024	116	250	\$ 1,313	\$ 151,712	\$ 109,600
-	132 St. north of 96 Ave.	1000082352	200	AC	1973	2024	91	250	\$ 1,313	\$ 119,294	\$ 86,181
-	135A St. at 107A Ave.	1000089924	200	AC	1963	2024	118	300	\$ 1,413	\$ 167,342	\$ 120,891
-	94A Ave. at 139 St.	1000079815	250	AC	1970	2024	90	375	\$ 1,591	\$ 143,967	\$ 104,005
-	King George Blvd. north of 108 Ave.	4	375	PVC	2013	2024	27	525	\$ 1,938	\$ 51,634	\$ 37,302
-	130 St. south of 108 Ave.	1000089908	200	VCP	1963	2025	101	250	\$ 1,313	\$ 133,045	\$ 93,315
-	132 St. south of Old Yale Road	1000082141	200	AC	1963	2025	31	300	\$ 1,413	\$ 43,364	\$ 30,415
-	Bolivar Crescent at King George Blvd.	1000089787	200	VCP	1963	2025	94	375	\$ 1,591	\$ 149,936	\$ 105,162
-	Grosvenor Road at Hilton Road	1000092958	200	VCP	1963	2025	109	300	\$ 1,413	\$ 153,500	\$ 107,662
-	102 Ave. at 139 St.	1000088543	200	AC	1972	2026	51	300	\$ 1,413	\$ 71,747	\$ 48,856
-	104 Ave. at Whalley Blvd.	1000093062	300	AC	1963	2026	13	450	\$ 1,763	\$ 23,110	\$ 15,737
-	111A Ave. at 135A St.	1000089778	150	VCP	1963	2026	54	250	\$ 1,313	\$ 70,391	\$ 47,933
-	140 St. north of 106 Ave.	1000092740	200	VCP	1963	2026	95	300	\$ 1,413	\$ 134,795	\$ 91,789
-	140 St. north of 106 Ave.	1000092741	200	VCP	1963	2026	95	300	\$ 1,413	\$ 134,371	\$ 91,500
-	140 St. north of 106 Ave.	1000092742	200	VCP	1963	2026	95	300	\$ 1,413	\$ 134,357	\$ 91,491
-	96 Ave. east of King George Blvd.	1000088188	250	AC	1966	2026	152	375	\$ 1,591	\$ 242,360	\$ 165,035
-	98B Ave, west of 134 St.	1000082363	200	PVC	1977	2026	87	300	\$ 1,413	\$ 122,633	\$ 83,507
-	King George Blvd. at 94A Ave.	1000079680	675	PVC	1999	2026	15	900	\$ 2,850	\$ 42,543	\$ 28,970
-	104 Ave. at 133 St.	1000089971	200	AC	1963	2027	69	250	\$ 1,313	\$ 90,248	\$ 59,665
-	104 Ave. at Whalley Blvd.	1000093063	300	AC	1963	2027	74	450	\$ 1,763	\$ 130,393	\$ 86,205
-	98A Ave. west of 133A St.	1000082369	200	PVC	1977	2027	42	300	\$ 1,413	\$ 59,468	\$ 39,315
-	Bolivar Crescent at King George Blvd.	1000089788	200	VCP	1963	2027	105	375	\$ 1,591	\$ 167,366	\$ 110,649
-	King George Blvd. at 96 Ave.	1000080856	450	PVC	1999	2027	14	600	\$ 2,113	\$ 29,998	\$ 19,832
-	King George Blvd. north of 108 Ave.	3	300	PVC	2013	2027	19	525	\$ 1,938	\$ 37,394	\$ 24,722
-	Lane east of King George Blvd., south of 105A Ave.	1000092935	200	VCP	1963	2027	94	300	\$ 1,413	\$ 132,367	\$ 87,510
-	Whalley Blvd. south of 100 Ave.	1000088346	600	PVC	1992	2027	113	750	\$ 2,513	\$ 284,383	\$ 188,011
-	109 Ave. at 139A St.	1000092447	150	VCP	1963	2028	56	250	\$ 1,313	\$ 73,579	\$ 47,227

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	111A Ave. at 136 St.	1000092943	200	VCP	1963	2028	116	300	\$ 1,413	\$ 163,443	\$ 104,908
-	132 St. north of Old Yale Road	1000082410	200	AC	1963	2028	4	300	\$ 1,413	\$ 5,594	\$ 3,590
-	104 Ave. at Whalley Blvd.	1000093064	300	AC	1963	2029	81	450	\$ 1,763	\$ 142,768	\$ 88,968
-	106 Ave. at 135A St.	1000089726	200	AC	1963	2029	101	300	\$ 1,413	\$ 142,811	\$ 88,995
-	108 Ave. at 130 St.	1000090176	200	VCP	1963	2029	114	250	\$ 1,313	\$ 149,087	\$ 92,906
-	King George Blvd. at 108 Ave.	1	375	PVC	2013	2029	11	600	\$ 2,113	\$ 22,329	\$ 13,915
-	102 Ave east of 139 St.	1000088343	200	VCP	1972	2030	45	300	\$ 1,413	\$ 62,890	\$ 38,049
-	132 St. at King George Blvd.	1000091568	600	PVC	1999	2030	4	750	\$ 2,513	\$ 9,140	\$ 5,530
-	133 St. at 102A Ave.	1000082558	150	AC	1967	2030	107	250	\$ 1,313	\$ 139,966	\$ 84,682
-	139A St. at 109 Ave.	1000093033	150	VCP	1963	2030	130	250	\$ 1,313	\$ 170,352	\$ 103,066
-	96 Ave. west of 134 St.	1000082383	200	AC	1973	2030	95	300	\$ 1,413	\$ 134,161	\$ 81,170
-	108 Ave. at 132A St.	1000090180	250	VCP	1963	2031	85	300	\$ 1,413	\$ 120,395	\$ 70,719
_	111A Ave. at 136 St.	1000092944	200	VCP	1963	2031	128	300	\$ 1,413	\$ 180,648	\$ 106,112
-	94A Ave. at 139 St.	1000079670	250	AC	1970	2031	72	300	\$ 1,413	\$ 101,223	\$ 59,458
-	Nordsun Rd. at 135A St.	1000089781	150	VCP	1963	2031	103	200	\$ 1,200	\$ 123,936	\$ 72,799
_	132 St. north of 96 Ave.	1000082398	200	AC	1973	2032	30	250	\$ 1,313	\$ 39,073	\$ 22,283
-	Berg Rd. at Cowan Rd.	1000092956	150	VCP	1963	2032	111	250	\$ 1,313	\$ 145,225	\$ 82,820
-	108 Ave. east of 138 St.	1000092789	150	VCP	1963	2033	99	250	\$ 1,313	\$ 129,964	\$ 71,958
_	132 St. north of 109 Ave.	1000090149	200	AC	1963	2033	106	300	\$ 1,413	\$ 149,334	\$ 82,682
-	139 St. north of 96 Ave.	1000088494	200	PVC	1980	2033	102	300	\$ 1,413	\$ 143,489	\$ 79,446
-	Selkirk Dr. at Cowan Rd.	1000092448	150	VCP	1963	2033	119	250	\$ 1,313	\$ 156,652	\$ 86,734
		Total					4,004			\$ 5,897,663	\$ 3,830,490

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

A9.2034 – 2043 Gravity Sewer Capacity Upgrades

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	139 St. north of 96 Ave.	1000088495	200	PVC	1980	2034	49	300	\$ 1,413	\$ 68,862	\$ 37,017
-	Brentwood Crescent north of Grosvenor Rd.	1000092937	200	VCP	1963	2034	103	250	\$ 1,313	\$ 135,044	\$ 72,593
-	Lane north of 98B Ave at 134 St.	1000082359	200	AC	1977	2034	61	250	\$ 1,313	\$ 79,961	\$ 42,983
-	102 Ave east of 139 St.	1000088280	200	AC	1972	2035	38	300	\$ 1,413	\$ 54,104	\$ 28,236
-	102 Ave east of 139 St.	1000088281	200	AC	1972	2035	14	300	\$ 1,413	\$ 19,650	\$ 10,255
-	105A Ave. east of University Dr.	1000089728	250	AC	1963	2035	94	375	\$ 1,591	\$ 149,095	\$ 77,812
-	133 St. north of Old Yale Road	1000082557	150	AC	1967	2035	93	250	\$ 1,313	\$ 121,957	\$ 63,648
-	139 St. north of 96 Ave.	1000088358	200	PVC	1991	2035	26	300	\$ 1,413	\$ 36,214	\$ 18,900
-	Lane W of KG Blvd S of 104 Ave	1000079424	200	AC	1973	2035	87	300	\$ 1,413	\$ 122,824	\$ 64,101
-	134 St. north of 98B Ave.	1000082370	200	AC	1974	2036	114	250	\$ 1,313	\$ 149,159	\$ 75,577
-	139 St. north of 96 Ave.	1000088359	200	PVC	1991	2036	32	300	\$ 1,413	\$ 44,623	\$ 22,610
-	139 St. north of 96 Ave.	1000088499	200	PVC	1980	2036	67	300	\$ 1,413	\$ 95,211	\$ 48,242
-	Hilton Rd. at Grosvenor Rd.	1000092967	200	VCP	1963	2036	103	300	\$ 1,413	\$ 145,673	\$ 73,811
-	King George Blvd. north of 108 Ave.	5	450	PVC	2013	2036	104	600	\$ 2,113	\$ 219,066	\$ 110,999
-	139 St. north of 104 Ave.	1000092795	200	VCP	1963	2037	130	300	\$ 1,413	\$ 183,329	\$ 90,186
-	139 St. north of 104 Ave.	1000092796	200	VCP	1963	2037	130	300	\$ 1,413	\$ 183,330	\$ 90,186
-	139A St, at Brentwood Crescent	1000093034	150	VCP	1963	2037	111	250	\$ 1,313	\$ 145,165	\$ 71,411
-	139A St. north of 102 Ave.	1000088385	200	VCP	1972	2037	112	300	\$ 1,413	\$ 158,804	\$ 78,121
-	Grosvenor Road at Selkirk Dr.	1000092451	200	VCP	1963	2037	102	300	\$ 1,413	\$ 144,113	\$ 70,894
-	King George Blvd. north of 108 Ave.	6	450	PVC	2013	2037	13	600	\$ 2,113	\$ 27,251	\$ 13,406
-	Lane east of Whalley Blvd., north of 105A Ave.	1000092927	200	VCP	1963	2037	96	300	\$ 1,413	\$ 136,000	\$ 66,903
-	Whalley Blvd. at Grosvenor Rd.	1000092959	150	VCP	1963	2037	134	250	\$ 1,313	\$ 175,823	\$ 86,493
-	105A Ave. east of City Parkway	1000089960	200	AC	1963	2038	93	300	\$ 1,413	\$ 131,198	\$ 62,661
-	138A St. north of 104 Ave.	1000092804	200	VCP	1963	2038	108	300	\$ 1,413	\$ 152,355	\$ 72,766
-	Brentwood Crescent at Grosvenor Rd.	1000093042	200	VCP	1963	2039	138	250	\$ 1,313	\$ 181,178	\$ 84,011
-	Lane north of 98B Ave at 134 St.	1000082360	200	AC	1977	2039	37	250	\$ 1,313	\$ 49,024	\$ 22,732
-	105 Ave. east of University Dr.	1000089731	525	CP	1963	2040	114	675	\$ 2,338	\$ 267,448	\$ 120,402
-	98A Ave., west of King George Blvd.	1000082376	200	AC	1973	2040	73	250	\$ 1,313	\$ 95,973	\$ 43,206
-	King George Blvd. north of 108 Ave.	7	450	PVC	2013	2040	76	600	\$ 2,113	\$ 159,916	\$ 71,993
-	King George Blvd. south of 107A Ave.	1000089986	200	AC	1963	2040	109	250	\$ 1,313	\$ 142,752	\$ 64,265

City Centre Plan, 2015

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)
-	King George Blvd., south of 98 Ave.	1000080848	200	AC	1973	2040	48	250	\$ 1,313	\$ 63,175	\$ 28,441
-	Brentwood Crescent at 139A St.	1000093036	200	VCP	1963	2041	107	300	\$ 1,413	\$ 151,467	\$ 66,203
-	Hilton Road and Bolivar Crescent	1000089785	150	VCP	1963	2041	52	250	\$ 1,313	\$ 68,455	\$ 29,920
-	138A St., north of 104 Ave.	1000093056	200	VCP	1963	2042	108	250	\$ 1,313	\$ 141,556	\$ 60,069
-	139 St. north of 96 Ave.	1000088496	200	PVC	1980	2042	45	250	\$ 1,313	\$ 58,552	\$ 24,846
-	Antrim Road east of Brentwood Crescent	1000093040	200	VCP	1963	2042	77	300	\$ 1,413	\$ 108,418	\$ 46,007
		Total					2,996			\$ 4,366,724	\$2,111,907

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

A10. 2044 – Build Out Gravity Sewer Capacity Upgrades

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)	
-	104 Ave. east of 138 St.	1000093065	300	AC	1963	2044	89	375	\$ 1,591	\$ 141,426	\$	56,568
-	96 Ave. between 134 St. and King George Blvd.	1000081853	200	AC	1973	2044	108	300	\$ 1,413	\$ 152,114	\$	60,844
-	City Parkway south of 108 Ave.	1000089930	150	AC	1963	2044	123	200	\$ 1,200	\$ 148,080	\$	59,230
-	Hilton Rd. at Grosvenor Rd.	1000093023	200	VCP	1963	2044	105	250	\$ 1,313	\$ 137,756	\$	55,100
-	105A Ave. east of City Parkway	1000089958	200	AC	1963	2045	7	300	\$ 1,413	\$ 9,309	\$	3,615
-	140 St. south of 100 Ave.	1000088180	300	PVC	2006	2045	9	375	\$ 1,591	\$ 14,291	\$	5,550
-	102 Ave. at 138A St.	1000088372	200	AC	1972	2046	42	250	\$ 1,313	\$ 55,694	\$	20,998
-	102 Ave. east of 139 St.	1000088542	200	AC	1972	2046	84	250	\$ 1,313	\$ 109,787	\$	41,393
-	111 Ave. east of 136 St.	1000092945	150	VCP	1963	2046	117	250	\$ 1,313	\$ 153,553	\$	57,893
-	104 Ave. at King George Blvd	1000092433	350	AC	1963	2047	20	450	\$ 1,763	\$ 36,099	\$	13,214
-	104 Ave. at King George Blvd	1000092434	350	AC	1963	2047	19	450	\$ 1,763	\$ 33,501	\$	12,263
-	133A St. south of 104 Ave.	1000082554	200	AC	1962	2047	76	300	\$ 1,413	\$ 107,173	\$	39,230
-	133A St. south of 104 Ave.	1000082555	200	AC	1962	2047	75	300	\$ 1,413	\$ 105,436	\$	38,594
-	138A St., north of 104 Ave.	1000092803	200	VCP	1963	2047	108	250	\$ 1,313	\$ 141,556	\$	51,816
-	Grosvenor Rd. at 108 Ave.	1000092960	150	VCP	1963	2047	101	250	\$ 1,313	\$ 132,286	\$	48,423
-	100 Ave. and Whalley Blvd	1000088371	200	PVC	1992	2048	17	300	\$ 1,413	\$ 23,732	\$	8,434
-	East of 135A St., south of 108 Ave.	1000089921	150	AC	1963	2049	94	200	\$ 1,200	\$ 112,437	\$	38,794
-	Grosvenor Rd east of Brentwood Crescent	1000093024	200	VCP	1963	2049	107	250	\$ 1,313	\$ 139,964	\$	48,292
-	103 Ave. at City Parkway	1000079426	150	AC	1963	2050	73	200	\$ 1,200	\$ 87,937	\$	29,457
-	108 Ave. east of Whalley Blvd	1000092791	150	VCP	1963	2050	104	250	\$ 1,313	\$ 135,962	\$	45,545
-	136 St. north of 111 Ave.	1000089765	200	VCP	1963	2050	111	250	\$ 1,313	\$ 145,135	\$	48,618
-	138 St. north of 104 Ave.	1000092915	200	VCP	1963	2050	106	300	\$ 1,413	\$ 149,757	\$	50,166
-	140 St. south of 100 Ave.	1000088465	200	AC	1974	2050	117	250	\$ 1,313	\$ 153,554	\$	51,438
-	Lane west of King George Blvd., north of 104 Ave.	1000089730	525	СР	1963	2050	165	675	\$ 2,338	\$ 386,101	\$	129,337
-	100A Ave. east of 132 St.	1000082421	200	AC	1974	2051	96	300	\$ 1,413	\$ 135,944	\$	44,213
-	139 St., north of 96 Ave.	1000088493	200	PVC	1980	2052	34	250	\$ 1,313	\$ 44,784	\$	14,141
-	96 Ave. between 134 St. and King George Blvd.	1000080912	200	PVC	2005	2052	3	250	\$ 1,313	\$ 3,504	\$	1,106
-	132A St. south of 108 Ave.	1000089941	200	AC	1963	2053	119	250	\$ 1,313	\$ 155,954	\$	47,809
-	Laurel Dr. west of 140 St.	1000088486	200	AC	1974	2053	37	250	\$ 1,313	\$ 48,483	\$	14,863
-	138 St. north of 104 Ave.	1000092914	200	VCP	1963	2054	106	300	\$ 1,413	\$ 149,333	\$	44,446

City Centre Plan, 2015

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)	
-	Antrim Road east of Brentwood	1000093041	200	VCP	1963	2055	77	250	\$ 1 313	\$ 101 138	\$	29 225
_	Berg Rd, at Grosvenor Rd	1000092442	150	VCP	1963	2055	111	200	\$ 1 200	\$ 133 133	\$	38 470
	King George Blvd. south of 107A	1000002442	100	101	1000	2000		200	ψ1,200	φ 100,100	Ψ	00,470
-	Ave.	1000089987	200	AC	1963	2055	116	250	\$ 1,313	\$ 152,753	\$	44,139
-	University Dr. at 105 Ave.	1000089692	525	CP	1993	2055	16	675	\$ 2,338	\$ 37,260	\$	10,767
-	100 Ave. at King George Blvd	1000088370	200	PVC	1992	2056	96	300	\$ 1,413	\$ 134,982	\$	37,868
-	Brentwood Crescent at Bentley Road	1000092939	200	VCP	1963	2056	103	250	\$ 1,313	\$ 135,051	\$	37,888
-	100A Ave. east of 132 St.	1000082420	200	AC	1974	2057	25	250	\$ 1,313	\$ 33,167	\$	9,034
-	139 St. north of 96 Ave.	1000088360	200	PVC	1991	2057	4	250	\$ 1,313	\$ 4,594	\$	1,251
-	94A Ave at King George Blvd	1000079656	675	PVC	1999	2057	5	750	\$ 2,513	\$ 13,250	\$	3,609
-	Harper Rd. between Bentley Rd. and Grosvenor Rd.	1000092965	150	VCP	1963	2057	86	200	\$ 1,200	\$ 103,100	\$	28,082
-	104 Ave. at King George Blvd	1000093059	350	AC	1963	2058	13	450	\$ 1,763	\$ 22,752	\$	6,016
-	105 Ave. west of University Dr.	1000089977	200	AC	1963	2058	43	250	\$ 1,313	\$ 55,808	\$	14,758
-	138 St. north of 105 Ave.	1000092912	200	VCP	1963	2058	94	250	\$ 1,313	\$ 122,761	\$	32,463
-	East of 132 St., north of 112 Ave.	1000090505	300	AC	1963	2058	152	375	\$ 1,591	\$ 242,056	\$	64,009
-	100 Ave. at King George Blvd	1000082167	200	PVC	1992	2059	84	300	\$ 1,413	\$ 118,003	\$	30,296
-	102A Ave. at 133A St.	1000082425	150	CP	1968	2059	79	200	\$ 1,200	\$ 95,064	\$	24,406
-	105 Ave. east of City Parkway	1000089963	525	CP	1963	2059	111	600	\$ 2,113	\$ 235,322	\$	60,416
-	111 Ave. east of 136 St.	1000092946	150	VCP	1963	2059	109	200	\$ 1,200	\$ 130,899	\$	33,606
-	133 St. south of 104 Ave.	1000082559	200	AC	1962	2059	67	250	\$ 1,313	\$ 88,591	\$	22,745
-	Lane north of 102 Ave. at University Dr.	1000082437	150	AC	1963	2059	67	200	\$ 1,200	\$ 80,797	\$	20,743
-	111 Ave. east of 136 St.	1000092947	150	VCP	1963	2060	109	200	\$ 1,200	\$ 130,887	\$	32,625
-	132 St. south of Old Yale Road	1000082405	200	AC	1963	2060	80	250	\$ 1,313	\$ 105,565	\$	26,313
-	139 St. south of 102 Ave.	1000088383	200	AC	1972	2060	91	300	\$ 1,413	\$ 129,116	\$	32,183
-	Selkirk Dr. at Grosvenor Rd	1000092449	150	VCP	1963	2060	119	200	\$ 1,200	\$ 142,491	\$	35,517
-	100 Ave. east of 141 St.	1000088278	300	PVC	2005	2062	109	375	\$ 1,591	\$ 173,510	\$	40,766
-	King George Blvd at 98 Ave.	1000081852	200	AC	1973	2062	108	250	\$ 1,313	\$ 141,557	\$	33,259
-	Lane east of 137A St., north of 105A Ave.	1000092430	200	VCP	1963	2062	96	250	\$ 1,313	\$ 125,964	\$	29,595
	Lane east of 137A St., north of 105A Ave.	1000092928	200	VCP	1963	2062	96	250	\$ 1 <u>,313</u>	\$ 125,964	\$	29,595
-	132A St. south of 108 Ave.	1000089940	200	AC	1963	2063	119	250	\$ 1,313	\$ 155,954	\$	35,574
-	100A Ave. east of 132 St.	1000079431	200	AC	1974	2064	18	250	\$ 1,313	\$ 23,038	\$	5,102
-	132 St. south of Old Yale Road	1000082408	200	AC	1963	2064	102	250	\$ 1,313	\$ 134,349	\$	29,753

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	Net Present Value (3%)	
-	133A St. at 98B Ave.	1000082362	200	PVC	1977	2064	47	250	\$ 1,313	\$ 61,887	\$ 13,706	
-	Fraser Hwy west of Whalley Blvd	1000088288	600	PVC	1992	2064	42	675	\$ 2,338	\$ 98,655	\$ 21,849	
-	Haddon Rd and Hilton Rd	1000089786	150	VCP	1963	2064	51	200	\$ 1,200	\$ 60,687	\$ 13,440	
-	Lane east of Whalley Blvd, south of 107A Ave.	1000092926	200	VCP	1963	2064	96	250	\$ 1,313	\$ 126,358	\$ 27,984	
-	105 Ave. west of City Parkway	1000089964	525	CP	1963	2065	86	600	\$ 2,113	\$ 181,683	\$ 39,064	
-	105A Ave. east of King George Blvd	1000092920	200	VCP	1963	2066	100	250	\$ 1,313	\$ 131,748	\$ 27,502	
-	City Parkway south of 105A Ave.	1000089954	150	AC	1963	2066	97	200	\$ 1,200	\$ 115,804	\$ 24,174	
-	132 St. south of Old Yale Road	1000082142	200	AC	1997	2067	12	250	\$ 1,313	\$ 15,658	\$ 3,173	
-	135A St. south of 108 Ave.	1000089920	200	AC	1963	2067	148	250	\$ 1,313	\$ 194,022	\$ 39,322	
-	135A St. south of 112 Ave.	1000089770	150	VCP	1963	2067	141	200	\$ 1,200	\$ 169,646	\$ 34,382	
-	Harper Rd. between Bentley Rd. and Grosvenor Rd.	1000092966	150	VCP	1963	2067	91	200	\$ 1,200	\$ 109,690	\$ 22,231	
-	Laurel Dr. west of 140 St.	1000088362	200	AC	1974	2067	33	250	\$ 1,313	\$ 43,485	\$ 8,813	
-	140 St. south of 108 Ave.	1000092739	200	VCP	1963	2071	113	250	\$ 1,313	\$ 148,785	\$ 26,792	
-	Fraser Hwy east of 138 St.	1000088476	200	AC	1968	2071	105	250	\$ 1,313	\$ 137,674	\$ 24,791	
-	133 St. south of 104 Ave.	1000082560	200	AC	1962	2072	112	250	\$ 1,313	\$ 147,634	\$ 25,810	
-	138A St. north of 104 Ave.	1000092423	200	PVC	1994	2072	15	250	\$ 1,313	\$ 19,150	\$ 3,348	
-	139 St. south of 102 Ave.	1000088382	200	AC	1972	2072	95	250	\$ 1,313	\$ 124,766	\$ 21,812	
-	140 St. south of 100 Ave.	1000088461	200	PVC	1980	2072	42	250	\$ 1,313	\$ 55,107	\$ 9,634	
-	105 Ave. east of City Parkway	1000089885	525	CP	1963	2073	24	600	\$ 2,113	\$ 50,428	\$ 8,559	
-	140 St. south of 100 Ave.	1000088463	200	AC	1974	2073	29	250	\$ 1,313	\$ 37,482	\$ 6,362	
-	Hilton Rd. east of Haddon Rd.	1000849877	150	VCP	1963	2073	36	200	\$ 1,200	\$ 43,597	\$ 7,400	
-	105A Ave. east of City Parkway	1000089959	200	AC	1963	2074	56	250	\$ 1,313	\$ 73,581	\$ 12,125	
-	133A St. south of 104 Ave.	1000082556	200	AC	1962	2074	91	250	\$ 1,313	\$ 119,970	\$ 19,770	
-	138A St. north of 104 Ave.	1000092800	200	PVC	1982	2074	72	250	\$ 1,313	\$ 94,593	\$ 15,588	
-	98A Ave., west of King George Blvd.	1000082377	200	AC	1973	2074	55	250	\$ 1,313	\$ 72,387	\$ 11,929	
-	West of Whalley Blvd north of 105A Ave.	1000092922	150	VCP	1963	2074	81	200	\$ 1,200	\$ 97,611	\$ 16,085	
-	102 Ave. at University Dr.	1000080870	350	PVC	2001	2075	49	375	\$ 1,591	\$ 78,060	\$ 12,489	
-	140 St. north of 109 Ave.	1000093043	150	VCP	1963	2075	70	200	\$ 1,200	\$ 84,464	\$ 13,513	
-	Franklin Rd. at Grosvenor Rd.	1000092444	150	VCP	1963	2075	94	200	\$ 1,200	\$ 112,242	\$ 17,958	
-	Lane south of 100 Ave. at 134 St.	1000082358	200	PVC	1977	2075	40	250	\$ 1,313	\$ 52,341	\$ 8,374	
-	105 Ave. west of University Dr.	1000089978	200	AC	1963	2076	29	250	\$ 1,313	\$ 38,181	\$ 5,931	
-	132 St. south of Old Yale Road	1000082407	200	AC	1963	2076	79	250	\$ 1,313	\$ 103,781	\$ 16,120	

City Centre Plan, 2015
10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Estimated Capital Cost	N V	et Present /alue (3%)
-	140 St. south of 100 Ave.	1000088462	200	AC	1974	2076	67	250	\$ 1,313	\$ 88,085	\$	13,682
-	111A Ave at Hilton Rd.	1000089774	200	VCP	1963	2077	76	250	\$ 1,313	\$ 99,870	\$	15,061
-	132 St. south of 108 Ave.	1000087078	200	VCP	1963	2077	115	250	\$ 1,313	\$ 151,452	\$	22,840
-	132A St. south of 108 Ave.	1000089942	200	AC	1963	2077	119	250	\$ 1,313	\$ 155,967	\$	23,521
-	135A St. south of 112 Ave.	1000089769	150	VCP	1963	2077	125	200 \$ 1,200		\$ 149,532	\$	22,550
-	Bentley Rd. at Hilton Rd.	1000092431	200	VCP	1963	2077	81	250	\$ 1,313	\$ 105,921	\$	15,974
-	108 Ave. at University Drive	1000089932	200	AC	1963	2078	37	250	\$ 1,313	\$ 48,855	\$	7,153
-	98B Ave. at 134 St.	1000082374	200	AC	1973	2078	73	250	\$ 1,313	\$ 95,974	\$	14,052
-	Lane east of Whalley Blvd, south of 107A Ave.	1000092925	200	VCP	1963	2078	96	250	\$ 1,313	\$ 126,371	\$	18,502
-	132 St. south of 110 Ave.	1000090150	200	AC	1963	2079	105	250	\$ 1,313	\$ 137,960	\$	19,611
-	140 St. south of 100 Ave.	1000088369	200	PVC	1997	2079	10	250	\$ 1,313	\$ 12,490	\$	1,775
-	Bentley Rd south of 110A Ave.	1000092954	200	VCP	1963	2080	94	250	\$ 1,313	\$ 123,548	\$	17,051
-	132 St. at King George Blvd.	1000091666	450	CP	1963	2081	32	525	\$ 1,938	\$ 61,982	\$	8,305
-	98B Ave. at 134 St.	1000082373	200	AC	1973	2081	108	250	\$ 1,313	\$ 141,965	\$	19,022
-	138A St. north of 104 Ave.	1000092802	200	VCP	1963	2082	117	200	\$ 1,200	\$ 140,028	\$	18,216
-	140 St. south of 100 Ave.	1000088178	300	PVC	2006	2082	5	375	\$ 1,591	\$ 8,343	\$	1,085
-	102 Ave. east of Whalley Blvd	1000088132	350	DIP	1996	2083	34	375	\$ 1,591	\$ 54,141	\$	6,838
		Total					8,402			\$11,483,164	\$	2,866,733

^Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

A11. DCC Eligible Gravity Main Projects

				Gravit	y Sewer L	Jpgrades					
10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Percentage of Flow Growth from Inside City Centre	DCC Eligible Capital Cost Attributable to City Centre
-	100 Ave. at 140 St.	1000088338	200	PVC	1989	2013	22	300	\$ 1,413	100%	\$ 30,911
-	100 Ave. at 140 St.	1000088339	200	PVC	1989	2013	102	300	\$ 1,413	100%	\$ 144,312
-	100 Ave. at 140 St.	1000088340	200	PVC	1989	2013	119	300	\$ 1,413	100%	\$ 167,382
-	100 Ave. at 140 St.	1000088341	200	PVC	1989	2013	21	300	\$ 1,413	100%	\$ 29,265
-	100 Ave. at Whalley Blvd.	1000088319	250	AC	1966	2013	14	375	\$ 1,591	100%	\$ 22,803
-	104 Ave. at 133 St.	1000089972	200	AC	1963	2013	91	375	\$ 1,591	100%	\$ 145,240
-	104 Ave. at 133 St.	1000089973	150	AC	1963	2013	150	250	\$ 1,313	100%	\$ 197,446
-	105A Ave. east of King George Blvd	1000092921	200	AC	1963	2013	51	375	\$ 1,591	100%	\$ 80,878
-	105A Ave. west of City Parkway	1000089961	250	AC	1963	2013	98	450	\$ 1,763	100%	\$ 171,868
-	111A Ave. at Bolivar Rd.	1000089773	200	VCP	1963	2013	29	250	\$ 1,313	100%	\$ 38,378
-	112 Ave. at 132 St. Diversion	1000090487	300	AC	1963	2013	154	525	\$ 1,938	100%	\$ 297,744
-	112 Ave. at 132 St. Diversion	1000090506	300	AC	1963	2013	46	525	\$ 1,938	100%	\$ 89,128
-	112 Ave. at 135 St.	1000090508	200	VCP	1963	2013	115	375	\$ 1,591	100%	\$ 182,208
-	112 Ave. at 135 St.	1000090509	200	VCP	1963	2013	118	300	\$ 1,413	100%	\$ 166,028
-	132 St. at 114 Ave.	1000091431	450	CP	1973	2013	9	900	\$ 2,850	100%	\$ 26,355
-	132 St. south of 96 Ave.	1000080224	200	AC	1973	2013	53	300	\$ 1,413	38%	\$ 28,341
-	132 St. south of 96 Ave.	1000080225	200	AC	1973	2013	118	300	\$ 1,413	38%	\$ 63,693
-	132 St. south of 96 Ave.	1000080226	200	AC	1973	2013	124	300	\$ 1,413	38%	\$ 66,408
-	132 St. south of 96 Ave.	1000080227	200	AC	1973	2013	119	300	\$ 1,413	38%	\$ 63,697
-	132 St. south of 96 Ave.	1000080228	200	AC	1973	2013	124	300	\$ 1,413	38%	\$ 66,111
-	136 St. at 112 Ave.	1000089766	200	VCP	1963	2013	92	375	\$ 1,591	100%	\$ 147,033
-	139 St. at 104 Ave.	1000092797	200	VCP	1963	2013	73	375	\$ 1,591	100%	\$ 116,358
-	139 St. at 104 Ave.	1000092798	200	VCP	1963	2013	128	375	\$ 1,591	100%	\$ 203,642
-	139 St. north of 104 Ave.	1000092794	200	VCP	1963	2013	123	375	\$ 1,591	100%	\$ 195,447
-	Brentwood Crescent at Bentley Road	1000092938	200	VCP	1963	2013	102	375	\$ 1,591	100%	\$ 162,778
-	City Parkway north of 105 Ave.	1000089727	150	AC	1963	2013	87	300	\$ 1,413	100%	\$ 122,520
-	Grosvenor Road at Franklin Road	1000092957	200	VCP	1963	2013	111	375	\$ 1,591	100%	\$ 176,455
-	Queen Elizabeth SS	1000080419	200	AC	1973	2013	73	250	\$ 1,313	100%	\$ 95,567
	2013 Gravity S	ewer Sub-Total					2,464				\$ 3,315,544
-	108 Ave. at 132A St.	1000090181	250	AC	1963	2017	16	450	\$ 1,763	100%	\$ 27,426

				Gravit	y Sewer L	Ipgrades					
10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Percentage of Flow Growth from Inside City Centre	DCC Eligible Capital Cost Attributable to City Centre
-	139 St. at 108 Ave.	1000092793	200	VCP	1963	2017	130	375	\$ 1,591	100%	\$ 206,538
-	139 St. south of 96 Ave.	1000079824	200	AC	1974	2017	101	375	\$ 1,591	100%	\$ 161,235
-	Bentley Rd. at King George Blvd.	1000089791	150	VCP	1963	2017	153	450	\$ 1,763	100%	\$ 270,368
-	Queen Elizabeth SS	1000080207	200	AC	1973	2017	115	250	\$ 1,313	100%	\$ 151,399
-	108 Ave. at 132A St.	1000089597	250	AC	1963	2018	9	375	\$ 1,591	100%	\$ 13,573
-	Bentley Rd. at King George Blvd.	1000089789	300	PVC	2008	2018	43	525	\$ 1,938	100%	\$ 83,700
-	Grosvenor Road at Franklin Road	1000092452	200	VCP	1963	2018	89	375	\$ 1,591	100%	\$ 141,929
-	112 Ave. at 132 St. Diversion	1000090507	300	VCP	1963	2019	114	450	\$ 1,763	100%	\$ 201,792
-	112 Ave. at 135 St.	1000091574	200	VCP	1963	2019	109	300	\$ 1,413	100%	\$ 153,612
-	132 St. north of King George Blvd.	1000091669	450	CP	1963	2019	92	675	\$ 2,338	100%	\$ 215,078
-	139 St. south of 96 Ave.	1000079819	200	AC	1973	2019	85	300	\$ 1,413	100%	\$ 120,472
-	132 St. north of King George Blvd.	1000091668	450	CP	1963	2020	62	675	\$ 2,338	100%	\$ 143,957
-	94A Ave. at 139 St.	1000079805	200	AC	1972	2020	61	300	\$ 1,413	100%	\$ 86,078
-	94A Ave. at 139 St.	1000079814	250	AC	1970	2020	12	375	\$ 1,591	100%	\$ 19,491
-	100 Ave. at Whalley Blvd.	1000088321	250	PVC	1987	2020	6	300	\$ 1,413	100%	\$ 8,302
-	132 St. north of 96 Ave.	1000082353	200	AC	1973	2021	14	250	\$ 1,313	40%	\$ 7,186
-	132 St. north of King George Blvd.	1000859861	450	CP	1963	2021	16	600	\$ 2,113	100%	\$ 34,206
-	132A St. at 105A Ave.	1000089939	200	AC	1963	2021	134	300	\$ 1,413	100%	\$ 189,787
-	111A Ave. and Brentwood Crescent	1000092942	200	VCP	1963	2022	108	300	\$ 1,413	100%	\$ 152,256
-	140 St. south of 100 Ave.	1000088464	200	AC	1974	2022	98	300	\$ 1,413	100%	\$ 138,995
-	Queen Elizabeth SS	1000080208	200	AC	1973	2022	71	250	\$ 1,313	100%	\$ 93,635
-	132 St. north of 96 Ave.	1000082397	200	AC	1973	2023	32	250	\$ 1,313	40%	\$ 16,998
-	132 St. north of King George Blvd.	1000091667	450	CP	1963	2023	90	600	\$ 2,113	100%	\$ 189,918
-	132 St. north of King George Blvd.	1000091670	450	CP	1963	2023	44	600	\$ 2,113	100%	\$ 93,142
-	135A St. at 107A Ave.	1000089923	200	AC	1963	2023	73	300	\$ 1,413	100%	\$ 103,145
	2014 - 2023 Gravity S	ewer Sub-Total					1,879				\$ 3,273,416
-	102 Ave. at 139 St.	1000088544	200	AC	1972	2024	69	300	\$ 1,413	100%	\$ 97,980
-	112B Ave. at 132 St.	1000090503	300	AC	1963	2024	30	450	\$ 1,763	100%	\$ 53,528
-	112B Ave. at 132 St.	1000090504	300	AC	1963	2024	124	450	\$ 1,763	100%	\$ 218,379
-	135A St. at 107A Ave.	1000089924	200	AC	1963	2024	118	300	\$ 1,413	100%	\$ 167,342
-	94A Ave. at 139 St.	1000079815	250	AC	1970	2024	90	375	\$ 1,591	100%	\$ 143,967
-	King George Blvd. north of 108 Ave.	4	375	PVC	2013	2024	27	525	\$ 1,938	100%	\$ 51,634
-	Grosvenor Road at Hilton Road	1000092958	200	VCP	1963	2025	109	300	\$ 1,413	100%	\$ 153,500

				Gravit	y Sewer U	Ipgrades					
10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Percentage of Flow Growth from Inside City Centre	DCC Eligible Capital Cost Attributable to City Centre
-	102 Ave. at 139 St.	1000088543	200	AC	1972	2026	51	300	\$ 1,413	100%	\$ 71,747
-	104 Ave. at Whalley Blvd.	1000093062	300	AC	1963	2026	13	450	\$ 1,763	100%	\$ 23,110
-	96 Ave. east of King George Blvd.	1000088188	250	AC	1966	2026	152	375	\$ 1,591	100%	\$ 242,360
-	King George Blvd. at 94A Ave.	1000079680	675	PVC	1999	2026	15	900	\$ 2,850	100%	\$ 42,543
-	104 Ave. at 133 St.	1000089971	200	AC	1963	2027	69	250	\$ 1,313	100%	\$ 90,248
-	104 Ave. at Whalley Blvd.	1000093063	300	AC	1963	2027	74	450	\$ 1,763	100%	\$ 130,393
-	King George Blvd. at 96 Ave.	1000080856	450	PVC	1999	2027	14	600	\$ 2,113	100%	\$ 29,998
-	Whalley Blvd. south of 100 Ave.	1000088346	600	PVC	1992	2027	113	750	\$ 2,513	100%	\$ 284,383
-	111A Ave. at 136 St.	1000092943	200	VCP	1963	2028	116	300	\$ 1,413	100%	\$ 163,443
-	104 Ave. at Whalley Blvd.	1000093064	300	AC	1963	2029	81	450	\$ 1,763	100%	\$ 142,768
-	106 Ave. at 135A St.	1000089726	200	AC	1963	2029	101	300	\$ 1,413	100%	\$ 142,811
-	102 Ave east of 139 St.	1000088343	200	VCP	1972	2030	45	300	\$ 1,413	100%	\$ 62,890
-	132 St. at King George Blvd.	1000091568	600	PVC	1999	2030	4	750	\$ 2,513	100%	\$ 9,140
-	108 Ave. at 132A St.	1000090180	250	VCP	1963	2031	85	300	\$ 1,413	100%	\$ 120,395
-	111A Ave. at 136 St.	1000092944	200	VCP	1963	2031	128	300	\$ 1,413	100%	\$ 180,648
-	94A Ave. at 139 St.	1000079670	250	AC	1970	2031	72	300	\$ 1,413	100%	\$ 101,223
-	132 St. north of 96 Ave.	1000082398	200	AC	1973	2032	30	250	\$ 1,313	40%	\$ 15,598
-	139 St. north of 96 Ave.	1000088494	200	PVC	1980	2033	102	300	\$ 1,413	100%	\$ 143,489
	2024 - 2033 Gravity S	ewer Sub-Total			1		1,831				\$ 3,158,309
-	139 St. north of 96 Ave.	1000088495	200	PVC	1980	2034	49	300	\$ 1,413	100%	\$ 68,862
-	Brentwood Crescent north of Grosvenor Rd.	1000092937	200	VCP	1963	2034	103	250	\$ 1,313	100%	\$ 135,044
-	Lane north of 98B Ave at 134 St.	1000082359	200	AC	1977	2034	61	250	\$ 1,313	100%	\$ 79,961
-	102 Ave east of 139 St.	1000088280	200	AC	1972	2035	38	300	\$ 1,413	100%	\$ 54,104
-	102 Ave east of 139 St.	1000088281	200	AC	1972	2035	14	300	\$ 1,413	100%	\$ 19,650
-	105A Ave. east of University Dr.	1000089728	250	AC	1963	2035	94	375	\$ 1,591	100%	\$ 149,095
-	139 St. north of 96 Ave.	1000088358	200	PVC	1991	2035	26	300	\$ 1,413	100%	\$ 36,214
-	134 St. north of 98B Ave.	1000082370	200	AC	1974	2036	114	250	\$ 1,313	100%	\$ 149,159
-	139 St. north of 96 Ave.	1000088359	200	PVC	1991	2036	32	300	\$ 1,413	100%	\$ 44,623
-	139 St. north of 96 Ave.	1000088499	200	PVC	1980	2036	67	300	\$ 1,413	100%	\$ 95,211
-	Hilton Rd. at Grosvenor Rd.	1000092967	200	VCP	1963	2036	103	300	\$ 1,413	100%	\$ 145,673
-	King George Blvd. north of 108 Ave.	5	450	PVC	2013	2036	104	600	\$ 2,113	100%	\$ 219,066
-	139 St. north of 104 Ave.	1000092795	200	VCP	1963	2037	130	300	\$ 1,413	100%	\$ 183,329
-	139 St. north of 104 Ave.	1000092796	200	VCP	1963	2037	130	300	\$ 1,413	100%	\$ 183,330

				Gravit	y Sewer U	pgrades					
10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Percentage of Flow Growth from Inside City Centre	DCC Eligible Capital Cost Attributable to City Centre
-	King George Blvd. north of 108 Ave.	6	450	PVC	2013	2037	13	600	\$ 2,113	100%	\$ 27,251
-	138A St. north of 104 Ave.	1000092804	200	VCP	1963	2038	108	300	\$ 1,413	100%	\$ 152,355
-	Brentwood Crescent at Grosvenor Rd.	1000093042	200	VCP	1963	2039	138	250	\$ 1.313	100%	\$ 181,178
-	Lane north of 98B Ave at 134 St.	1000082360	200	AC	1977	2039	37	250	\$ 1.313	100%	\$ 49.024
-	105 Ave. east of University Dr.	1000089731	525	CP	1963	2040	114	675	\$ 2.338	100%	\$ 267.448
-	98A Ave., west of King George Blvd.	1000082376	200	AC	1973	2040	73	250	\$ 1,313	100%	\$ 95,973
-	King George Blvd. north of 108 Ave.	7	450	PVC	2013	2040	76	600	\$ 2,113	100%	\$ 159,916
-	King George Blvd. south of 107A	1000089986	200	AC	1963	2040	109	250	\$ 1313	100%	\$ 142 752
	King George Blvd south of 98 Ave	1000080848	200	AC	1973	2040	48	250	\$ 1,313	100%	\$ 63 175
-	138A St., north of 104 Ave.	1000093056	200	VCP	1963	2042	108	250	\$ 1.313	100%	\$ 141.556
-	139 St. north of 96 Ave.	1000088496	200	PVC	1980	2042	45	250	\$ 1.313	100%	\$ 58.552
	2034 - 2043 Gravity S	ewer Sub-Total					1,932				\$3,014,364
-	104 Ave. east of 138 St.	1000093065	300	AC	1963	2044	89	375	\$ 1,591	100%	\$ 141,426
-	Hilton Rd. at Grosvenor Rd.	1000093023	200	VCP	1963	2044	105	250	\$ 1,313	100%	\$ 137,756
-	140 St. south of 100 Ave.	1000088180	300	PVC	2006	2045	9	375	\$ 1,591	100%	\$ 14,291
-	102 Ave. at 138A St.	1000088372	200	AC	1972	2046	42	250	\$ 1,313	100%	\$ 55,694
-	102 Ave. east of 139 St.	1000088542	200	AC	1972	2046	84	250	\$ 1,313	100%	\$ 109,787
-	104 Ave. at King George Blvd	1000092433	350	AC	1963	2047	20	450	\$ 1,763	100%	\$ 36,099
-	104 Ave. at King George Blvd	1000092434	350	AC	1963	2047	19	450	\$ 1,763	100%	\$ 33,501
-	138A St., north of 104 Ave.	1000092803	200	VCP	1963	2047	108	250	\$ 1,313	100%	\$ 141,556
-	136 St. north of 111 Ave.	1000089765	200	VCP	1963	2050	111	250	\$ 1,313	100%	\$ 145,135
-	138 St. north of 104 Ave.	1000092915	200	VCP	1963	2050	106	300	\$ 1,413	100%	\$ 149,757
-	140 St. south of 100 Ave.	1000088465	200	AC	1974	2050	117	250	\$ 1,313	100%	\$ 153,554
-	Lane west of King George Blvd., north of 104 Ave.	1000089730	525	СР	1963	2050	165	675	\$ 2,338	100%	\$ 386,101
-	139 St., north of 96 Ave.	1000088493	200	PVC	1980	2052	34	250	\$ 1,313	100%	\$ 44,784
-	96 Ave. between 134 St. and King George Blvd.	1000080912	200	PVC	2005	2052	3	250	\$ 1,313	100%	\$ 3,504
-	132A St. south of 108 Ave.	1000089941	200	AC	1963	2053	119	250	\$ 1,313	100%	\$ 155,954
-	138 St. north of 104 Ave.	1000092914	200	VCP	1963	2054	106	300	\$ 1,413	100%	\$ 149,333
-	King George Blvd. south of 107A Ave.	1000089987	200	AC	1963	2055	116	250	\$ 1,313	100%	\$ 152,753
-	University Dr. at 105 Ave.	1000089692	525	CP	1993	2055	16	675	\$ 2,338	100%	\$ 37,260

				Gravit	ty Sewer U	Ipgrades					
10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	Percentage of Flow Growth from Inside City Centre	DCC Eligible Capital Cost Attributable to City Centre
-	Brentwood Crescent at Bentley Road	1000092939	200	VCP	1963	2056	103	250	\$ 1,313	100%	\$ 135,051
-	139 St. north of 96 Ave.	1000088360	200	PVC	1991	2057	4	250	\$ 1,313	100%	\$ 4,594
-	94A Ave at King George Blvd	1000079656	675	PVC	1999	2057	5	750	\$ 2,513	100%	\$ 13,250
-	104 Ave. at King George Blvd	1000093059	350	AC	1963	2058	13	450	\$ 1,763	100%	\$ 22,752
-	138 St. north of 105 Ave.	1000092912	200	VCP	1963	2058	94	250	\$ 1,313	100%	\$ 122,761
-	East of 132 St., north of 112 Ave.	1000090505	300	AC	1963	2058	152	375	\$ 1,591	100%	\$ 242,056
-	105 Ave. east of City Parkway	1000089963	525	СР	1963	2059	111	600	\$ 2,113	100%	\$ 235,322
-	King George Blvd at 98 Ave.	1000081852	200	AC	1973	2062	108	250	\$ 1,313	100%	\$ 141,557
-	132A St. south of 108 Ave.	1000089940	200	AC	1963	2063	119	250	\$ 1,313	100%	\$ 155,954
-	Fraser Hwy west of Whalley Blvd	1000088288	600	PVC	1992	2064	42	675	\$ 2,338	100%	\$ 98,655
-	105 Ave. west of City Parkway	1000089964	525	СР	1963	2065	86	600	\$ 2,113	100%	\$ 181,683
-	105A Ave. east of King George Blvd	1000092920	200	VCP	1963	2066	100	250	\$ 1,313	100%	\$ 131,748
-	138A St. north of 104 Ave.	1000092423	200	PVC	1994	2072	15	250	\$ 1,313	100%	\$ 19,150
-	140 St. south of 100 Ave.	1000088461	200	PVC	1980	2072	42	250	\$ 1,313	100%	\$ 55,107
-	105 Ave. east of City Parkway	1000089885	525	CP	1963	2073	24	600	\$ 2,113	100%	\$ 50,428
-	140 St. south of 100 Ave.	1000088463	200	AC	1974	2073	29	250	\$ 1,313	100%	\$ 37,482
-	138A St. north of 104 Ave.	1000092800	200	PVC	1982	2074	72	250	\$ 1,313	100%	\$ 94,593
-	98A Ave., west of King George Blvd.	1000082377	200	AC	1973	2074	55	250	\$ 1,313	100%	\$ 72,387
-	102 Ave. at University Dr.	1000080870	350	PVC	2001	2075	49	375	\$ 1,591	100%	\$ 78,060
-	Lane south of 100 Ave. at 134 St.	1000082358	200	PVC	1977	2075	40	250	\$ 1,313	100%	\$ 52,341
-	140 St. south of 100 Ave.	1000088462	200	AC	1974	2076	67	250	\$ 1,313	100%	\$ 88,085
-	111A Ave at Hilton Rd.	1000089774	200	VCP	1963	2077	76	250	\$ 1,313	100%	\$ 99,870
-	132A St. south of 108 Ave.	1000089942	200	AC	1963	2077	119	250	\$ 1,313	100%	\$ 155,967
-	Bentley Rd. at Hilton Rd.	1000092431	200	VCP	1963	2077	81	250	\$ 1,313	100%	\$ 105,921
-	140 St. south of 100 Ave.	1000088369	200	PVC	1997	2079	10	250	\$ 1,313	100%	\$ 12,490
-	132 St. at King George Blvd.	1000091666	450	СР	1963	2081	32	525	\$ 1,938	100%	\$ 61,982
-	138A St. north of 104 Ave.	1000092802	200	VCP	1963	2082	117	200	\$ 1,200	100%	\$ 140,028
-	140 St. south of 100 Ave.	1000088178	300	PVC	2006	2082	5	375	\$ 1,591	100%	\$ 8,343
-	102 Ave. east of Whalley Blvd	1000088132	350	DIP	1996	2083	34	375	\$ 1,591	100%	\$ 54,141
	2044 - 2083 BO Gravity Se	ewer Sub-Total					3,171				\$4,820,004
	2013 - 2083 BO Gravity Se	ewer Sub-Total					11,277				\$17,581,637

A12. DCC Eligible Gravity Main Upsizing Projects

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	DCC Eligible Capital Cost
_	Hilton Rd Diversion, Bentley Rd at	_				2013	30	450	450	17 550
-	2013	τοται				2010	39	400	400	\$17 550
	132 St north of 96 Ave	1000082350	200	AC	1973	2017	108	300	212	22,896
-	132 St north of 96 Ave	1000082351	200	AC	1973	2017	123	300	212	26.076
-	100 Ave at 143 St	1000088420	200	AC	1975	2018	95	300	212	20,140
-	100 Ave at 143 St	1000088421	200	AC	1975	2018	116	300	212	24.592
_	100 Ave at 140 St	1000088377	200	VCP	1972	2019	51	300	100	5.100
-	Lane east of King George Blvd, south of 105A Ave	1000092936	200	VCP	1963	2019	103	375	220	22,660
-	132 St at Old Yale Rd	1000082409	200	VCP	1963	2020	114	300	100	11,400
-	141 St at 101 Ave	1000088410	200	VCP	1972	2020	86	300	212	18,232
-	141 St at 101 Ave	1000088411	200	AC	1972	2020	69	300	212	14,628
-	132 St at Old Yale Rd	1000082411	200	VCP	1963	2021	125	300	100	12,500
-	140 St at 108 Ave	1000092691	150	VCP	1963	2021	15	250	112	1,680
-	141 St at 102 Ave	1000088408	200	VCP	1972	2022	99	250	112	11,088
-	King George Blvd at 108 Ave	2	375	PVC	2013	2022	52	600	800	41,600
_	100 Ave east of 143 St	1000088419	200	AC	1972	2023	79	250	112	8,848
-	141 St south of 102 Ave	1000088409	200	VCP	1972	2023	63	250	112	7,056
-	Grosvenor Rd at 108 Ave	1000092961	150	AC	1963	2023	7	300	100	700
-	2014 - 2023	TOTAL					1,305			\$249,196
-	130 St south of 108 Ave	1000089879	200	VCP	1963	2024	116	250	112	12,992
-	132 St north of 96 Ave	1000082352	200	AC	1973	2024	91	250	112	10,192
-	130 St south of 108 Ave	1000089908	200	VCP	1963	2025	101	250	112	11,312
-	132 St south of Old Yale Rd	1000082141	200	AC	1963	2025	31	300	100	3,100
-	Bolivar Cres at King George Blvd	1000089787	200	VCP	1963	2025	94	375	275	25,850
-	111A Ave at 135A St	1000089778	150	VCP	1963	2026	54	250	112	6,048
-	140 St north of 106 Ave	1000092740	200	VCP	1963	2026	95	300	100	9,500
-	140 St north of 106 Ave	1000092741	200	VCP	1963	2026	95	300	100	9,500
-	140 St north of 106 Ave	1000092742	200	VCP	1963	2026	95	300	100	9,500
-	98B Ave, west of 134 St	1000082363	200	PVC	1977	2026	87	300	212	18,444
-	98A Ave west of 133A St	1000082369	200	PVC	1977	2027	42	300	212	8,904

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	DCC Eligible Capital Cost
-	Bolivar Cres at King George Blvd	1000089788	200	VCP	1963	2027	105	375	275	28,875
-	King George Blvd north of 108 Ave	3	300	PVC	2013	2027	19	525	625	11,875
-	Lane E of KG Blvd, S of 105A Ave	1000092935	200	VCP	1963	2027	94	300	100	9,400
-	109 Ave at 139A St	1000092447	150	VCP	1963	2028	56	250	112	6,272
-	132 St north of Old Yale Rd	1000082410	200	AC	1963	2028	4	300	100	400
-	108 Ave at 130 St	1000090176	200	VCP	1963	2029	114	250	112	12,768
-	King George Blvd at 108 Ave	1	375	PVC	2013	2029	11	600	800	8,800
-	139A St at 109 Ave	1000093033	150	VCP	1963	2030	130	250	112	14,560
-	96 Ave west of 134 St	1000082383	200	AC	1973	2030	95	300	212	20,140
-	Berg Rd at Cowan Rd	1000092956	150	VCP	1963	2032	111	250	112	12,432
-	132 St north of 109 Ave	1000090149	200	AC	1963	2033	106	300	100	10,600
-	Selkirk Dr at Cowan Rd	1000092448	150	VCP	1963	2033	119	250	112	13,328
-	2024 - 2033	TOTAL					1,865			\$274,792
-	Lane W of KG Blvd S of 104 Ave	1000079424	200	AC	1973	2035	87	300	100	8,700
-	139A St at Brentwood Cres	1000093034	150	VCP	1963	2037	111	250	112	12,432
-	139A St north of 102 Ave	1000088385	200	VCP	1972	2037	112	300	100	11,200
-	Grosvenor Rd at Selkirk Dr	1000092451	200	VCP	1963	2037	102	300	212	21,624
-	Lane E of Whalley Blvd North of 105A Ave	1000092927	200	VCP	1963	2037	96	300	100	9,600
-	105A Ave east of City Parkway	1000089960	200	AC	1963	2038	93	300	100	9,300
-	Brentwood Cres at 139A St	1000093036	200	VCP	1963	2041	107	300	212	22,684
-	Antrim Rd east of Brentwood Cres	1000093040	200	VCP	1963	2042	77	300	212	16,324
-	2034 - 2043	TOTAL					785			111,864
-	96 Ave between 134 St and KG Blvd	1000081853	200	AC	1973	2044	108	300	100	10,800
-	105A Ave east of City Parkway	1000089958	200	AC	1963	2045	7	300	100	700
-	111 Ave east of 136 St	1000092945	150	VCP	1963	2046	117	250	112	13,104
-	133A St south of 104 Ave	1000082554	200	AC	1962	2047	76	300	100	7,600
-	133A St south of 104 Ave	1000082555	200	AC	1962	2047	75	300	100	7,500
-	100 Ave and Whalley Blvd	1000088371	200	PVC	1992	2048	17	300	100	1,700
-	Grosvenor Rd east of Brentwood Cres	1000093024	200	VCP	1963	2049	107	250	112	11,984
-	100A Ave east of 132 St	1000082421	200	AC	1974	2051	96	300	100	9,600
-	Antrim Rd east of Brentwood Cres	1000093041	200	VCP	1963	2055	77	250	112	8,624
-	100 Ave at KG Blvd	1000088370	200	PVC	1992	2056	96	300	100	9,600
-	100 Ave at KG Blvd	1000082167	200	PVC	1992	2059	84	300	100	8,400

10 Year Servicing Plan ID	Location	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost (\$/m)	DCC Eligible Capital Cost
-	139 St south of 102 Ave	1000088383	200	AC	1972	2060	91	300	100	9,100
-	100 Ave east of 141 St	1000088278	300	PVC	2005	2062	109	375	388	42,292
-	133A St at 98B Ave	1000082362	200	PVC	1977	2064	47	250	112	5,264
-	Bentley Rd south of 110A Ave	1000092954	200	VCP	1963	2080	94	250	112	10,528
-	2044 - BO	TOTAL					1,201			\$156,796
-	2013 2044 - BO	TOTAL					5,195			\$810,198

A13. DCC Eligible Pump Station & Forcemain Projects

			Pump	Station a	ind Force	main Upg	rades				
10 Year Servicing Plan ID	Description	Pipe ID	Ex. Dia. (mm)	Ex. Material	Year Installed	Upgrade Year	Length (m)	Proposed Dia. (mm)	Unit Cost	Percent Attributable to City Centre	DCC Eligible Capital Cost
12721	Add 1 – 225 L/s pump to Quibble Creek Pump Station (4 th Pump)	-	-	-	-	2019	-	-	\$110,000.00	100%	\$110,000
-	Twin 1598 m of 500 mm dia. forcemain w/ 675 mm dia.	-	500	DIP	1999	2030	1598	675	\$ 2,125	100%	\$ 3,395,750
-	Twin 718 m of 600 mm dia. forcemain w/ 600 mm dia.	-	600	DIP	1999	2073	718	600	\$ 1,950	100%	\$1,400,100
	Pump Station and Forcemain S	ub-Total					2,316				\$ 4,905,850
	DCC Eligible Projects Gra	nd Total					18,788				\$ 23,297,685

A14. Quibble Creek Pump Station System Curve

A15. Assignment of Sewage Loadings by Sub-Catchment

A16. City Centre Projected Growth Areas for Development Staging Scenarios

			2013			2023			2033			2043			2083	
	# of SF Parcels (2007)	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop
Polygon A	72	0%	38%	53	65%	100%	49	21%	100%	110	9%	100%	126	5%	100%	132
Polygon B	280	0%	38%	205	14%	100%	465	22%	100%	422	23%	100%	416	41%	100%	319
Polygon C	452	0%	38%	331	5%	100%	829	13%	100%	759	15%	100%	742	67%	100%	288
Polygon D	286	0%	38%	210	2%	100%	541	2%	100%	541	6%	100%	519	90%	100%	55
Existing	901	0%	38%	661	0%	100%	1,739	0%	100%	1,739	0%	100%	1,739	0%	100%	1,739
Total	1,991			1,460			3,622			3,570			3,542			2,533

2013	2023	2033	2043	2083
32,352	48,820	68,288	88,564	158,066
1,460	3,622	3,570	3,542	2,533
33,812	52,442	71,858	92,106	160,599
	2013 32,352 1,460 33,812	2013 2023 32,352 48,820 1,460 3,622 33,812 52,442	2013 2023 2033 32,352 48,820 68,288 1,460 3,622 3,570 33,812 52,442 71,858	2013 2023 2033 2043 32,352 48,820 68,288 88,564 1,460 3,622 3,570 3,542 33,812 52,442 71,858 92,106

A-2.3

Consultant Report

WATER INFRASTRUCTURE

8 Water Infrastructure

The City of Surrey has updated their City Centre Plan, which predicts a dramatic increase in population that will place additional demands on the existing water transmission and distribution infrastructure, and will ultimately exceed the capacity of some existing pipelines. This study estimates water demands for five scenarios and identifies water infrastructure upgrades that will be required to support development. These scenario horizons are:

- Existing (based on Year 2013);
- Year 2023;
- Year 2033;
- Year 2043; and
- Build Out (Year 2083).

The City Centre study area includes approximately 550 hectares (Ha) of land and is generally bound by 132nd Street to the west, 140th Street to the east, 112th Avenue to the north and 96th Avenue to the south. The current City Centre Plan that reflects full build out conditions is shown in *Figure 8.1*.

The City Centre area straddles the pressure zone boundary that separates the 135 m HGL Kennedy pressure zone from the 155 m HGL Whalley pressure zone. The 135 m HGL Kennedy pressure zone is generally served by the Kennedy pump station while the 155 m Whalley pressure zone is generally served by the Whalley pump station and the Whalley booster station.

The North Surrey hydraulic water model was utilized to identify existing and future hydraulic deficiencies and identify solutions to those deficiencies. We have assumed that the North Surrey hydraulic water model is calibrated appropriately for use in the current project. We assume that future water demands external to City Centre are based on the best planning information available and is a suitable representation of water demands outside of City Centre. Information for all future scenarios outside the City Centre was obtained from the *Model Development Summary* by Kerr Wood Leidal.

Key Objectives

This report was developed to address the following key objectives:

- Identify water demands for the Existing, 2023, 2033, 2043, and Build-Out planning horizons; and
- Develop phased servicing strategies that meet the water demand requirements for each of the five planning horizons.

Terms and Definitions

Table 8.1 provides a summary of key terms (with abbreviations) and definitions used throughout this report.

Key Term (and Abbreviation)	Definition		
Average Daily Demand (ADD)	Annual water demand from all sources averaged to a single day.		
Base Demand (BDD)	That part of water demand that is relatively unaffected by season or weather. Base Demand is largely indoor residential and ICI water use.		
Diurnal Pattern	Pattern describing the variance in water-use over an entire day.		
Fire Underwriters Survey (FUS)	Standard criteria developed by the Insurance Industry to evaluate fire services, including minimum fire flow and fire storage requirements.		
Headloss	The head, pressure or energy (they are the same) lost by water flowing through a pipe, bend/deflection, valve, etc. as a result of friction.		
Hydraulic Grade Line (HGL)	The surface or profile of water flowing. The level water would rise to in a small vertical tube connected to the pipe. (HGL = elevation + pressure).		
IC	Institutional and Commercial, generally concerning water use sector and demand		
WaterCAD	Computer software used to develop a model of the water distribution system and analyze flow and pressure hydraulics		
North Surrey Hydraulic Model	North Surrey water model developed by Kerr Wood Leidal Associates (2004) and updated in 2008 by AECOM		
Leakage ("water loss")	Water lost from the system through cracks in watermains, unseated valves, misaligned joints, reservoir cracks, overflows. (occurs on City watermains and on private services)		
Million Litres (ML)	1 ML/day refers to 1 million litres of water per day		
Maximum Day Demand (MDD)	Highest daily water usage over the entire year.		
Peak Hour Demand (PHD)	Highest water usage for any given 1-hour period, over an entire year.		
Pressure Reducing Valve (PRV)	A control valve that automatically reduces the inlet pressure in a watermain to a set downstream pressure.		
Pressure Zone (PZ)	A water service area in which all the users have the same static HGL. Water cannot flow from one PZ to another without passing through a PRV or another control valve. PZ's are often isolated through the use of closed zone valves.		
Seasonal Demand	That element of water demand that is impacted by season or weather. The largest part of seasonal demand is residential irrigation in the summer months.		
Unit Conversions			
Pressure Psi to <u>"m"</u> or <u>"kPa"</u>	1.0psi = 0.70m = 7.0kpa (so 100psi = 70m = 700 kPa)		
Volume Litres to gallons	3.79 Litres = 1.0 US gallon and 4.54 Litres = 1.0 Imp. gallon		
HGL Geodetic to GVRD	0.0m Geodetic = GVRD Datum of 91.37 ft		
Flow Rate <u>L/s</u> to <u>gpm</u> 1.0 L/s = 15.9 USgpm = 13.2 lmp. gpm			

8.0 Existing & Future Servicing Catchments & Details

Existing studies and information utilized in the development of this report included:

- City Centre Plan;
- City of Surrey geodatabase;
- GIS shape files of City water distribution system, pressure zone boundaries, and pump stations;
- City of Surrey, 2004 Model Development Summary, Kerr Wood Leidal;
- City of Surrey, 2007 North Surrey Pump Station Study, Kerr Wood Leidal;
- City of Surrey, "Various Water System Modelling Assignments within the ALR and North and South Surrey" project in 2008 by AECOM (formerly Earth Tech);
- City of Surrey, "Surrey City Centre Water Servicing Strategy" project in 2014 by AECOM
- North Surrey WaterCAD Version 8.0 hydraulic model;
- Legal parcels and water supply network (GIS shapefile format);
- City of Surrey Design Criteria Manual 2004;
- GIS data for the water distribution system (i.e. pressure zones, PRVs, pipe networks, etc.); and
- Topographic information.

8.0.1 Equivalent Population Generation

Based on population projections provided by the City for the land use shown in *Figure 8.1*, City Centre is expected to grow dramatically in the near future. This section identifies future populations as well as equivalent populations generated to determine water demands. *Table 8.2* below is a population summary for the various design horizons included in the Plan. These populations were developed specifically for predicting future water demands in City Centre and are not intended for other uses. It is important to note that there is no predicted industrial component in City Centre and therefore only institutional and commercial (IC) equivalent populations are generated.

For the existing Simon Fraser University (SFU), there are no residents living in this facility and only students and teachers are present. As such, the SFU equivalent population has already been accounted for in the 7.5 FAR where future residential units and apartments may be built.

Horizon Year	Residential Population	Commercial Equivalent Population	Institutional Equivalent Population	Total Equivalent Population
Existing	33,812	23,585	2,754	60,151
2023	52,442	33,064	3,322	88,828
2033	71,858	42,543	3,904	118,305
2043	92,106	52,022	3,998	148,126
Build Out	160,599	89,937	4,601	255,137

Table 8.2 Summary of Water Populations Per Horizon Year

Further details as to how these populations were generated are provided in Appendix B.

8.0.2 Water Demand Unit Rates

Water demands generated in the North Surrey Hydraulic Water Model are divided into two basic categories:

1. <u>Base Demand Unit Rate:</u> Base demand (also called non-seasonal demand) is predominantly indoor water use that occurs on a daily basis regardless of season. This demand is sensitive to population and is represented on a per capita basis.

The per capita demand utilized in this study for the calculation of base demand is **320 litres/capita/day (L/c/d)** resulting from an analysis of metered residential demands during the winter months, unmetered residential base demands, and an allowance for leakage (estimated at approximately 10%). This unit rate was developed as part of the 2005 KWL *Grandview Pump Station Pre-Design Report* and was utilized in the 2007 KWL *North Surrey Pump Station Study*. To calculate base demand for institutional land uses, the following unit rates were applied:

- Schools = 45 (elementary) or 90 (secondary) L/c/d (Surrey Design Criteria);
- Hospitals = 900 L/bed/d (Sewer Model, 2010 & MOH Standards, Health Act);
- Retirement Homes = 650 L/bed/d (Sewer Model, 2010).
- 2. <u>Seasonal Demand Unit Rate:</u> The seasonal demand primarily represents outdoor irrigation that occurs during the summer months and is sensitive to irrigable area. In this study, Seasonal Demand is calculated on a unit area basis with future scenarios utilizing 0.39 litres/second/hectare (L/s/ha) as the unit seasonal demand. This unit demand was developed as part of the 2004 water model development effort and is presented in the 2004 Water Model: Model Development report by KWL.

It is important to separate the base demand representing indoor water use from the seasonal demands for irrigation. As City Centre develops, single family residential areas will be redeveloped into high density mid and high rise developments. High rise apartment dwellers have a lower per capita irrigation demand than single family home owners, due to the smaller amount of irrigable land per capita for the high rise dwellers. Therefore, estimating the irrigation demand based on population increase would over estimate MDD and PHD demands for high density development. This study bases seasonal demand on land area, which is related to irrigable area, and will provide a more accurate seasonal demand estimate for future scenarios.

It could be argued that mid and high rise developments often have built in water sprinkler systems and contract gardeners that maintain green space attached to these developments, therefore, irrigation for these developments is performed more regularly than a single family dwelling. We have assumed that differences in the ratio of irrigable area versus lot size between low density and high density development will be masked by the increase in more regular watering.

8.0.3 City Centre Base Day Demand (BDD)

All BDD scenarios were developed through multiplying the per capita BDD unit rate (320 L/c/d) by the residential, institutional, and commercial equivalent populations developed for each horizon.

8.0.4 City Centre Maximum Day Demand (MDD)

The MDD is the sum of the winter average BDD and the seasonal demand for all scenarios.

8.0.5 City Centre Peak Hour Demand (PHD)

PHD was calculated by combining the peak summer BDD and peak seasonal water demand. Peaking factors provided with the North Surrey Hydraulic Model were utilized for the existing scenario (1.33 for residential and 1.2 for commercial). All future scenarios utilize peaking factors developed from 2007 meter data from the Clayton area of Surrey. Peaking factors were developed for both the base and seasonal demands to better represent the difference between indoor water use and irrigation peaks. As City Centre population density increases, single family residential areas will be replaced with mid and high rise residential. Irrigation demands will be relatively independent of population for high density neighbourhoods and maintaining separate residential (base) and irrigation (seasonal) demands will provide a more accurate estimate of future PHD.

Base demand PHD peaking factors were further divided into residential and commercial water use sectors due to the significant differences in water use between these sectors. The Residential base demand peaking factor was estimated to be 1.7 using November 2007 bulk meter data from Clayton as a basis. For commercial and institutional land uses, the base demand peaking factor was estimated to be 1.2 based on previous studies completed for the Township of Langley and City of New Westminster.

A separate peaking factor of 2.1 was estimated for the seasonal demand based on August 2007 bulk meter data from Clayton. The seasonal demand peaks were assumed to be similar in both residential and IC land uses.

8.0.6 City Centre Fire Flow Demand (FF)

Fire flow demands are based on land use zoning. The City of Surrey Design Criteria Manual (2004) includes 52 separate zonings with five different fire flow values. For modelling purposes, the fire flow demands in the City of Surrey Engineering Department Design Criteria Manual (2004) is simplified to include three basic land uses in City Centre with three different fire flow values:

- Single Family Residential = 60 L/s;
- Multi-Family Residential = 200 L/s; and,
- Commercial and Institutional = 200 L/s.

This simplification will overestimate fire flow requirements for duplex residential, neighbourhood commercial and self-service gas station properties. However, there are few existing properties impacted by this simplification and future City Centre is largely dense commercial and residential development with higher fire flow requirements. Therefore, the impact of this simplification is marginal and does not impact the medium and long term infrastructure requirements in City Centre.

8.0.7 Water Demand Outside of City Centre

The North Surrey Hydraulic Model includes a large area that extends beyond the boundaries of City Centre. North Surrey includes 6 pressure zones (7 pressure sub-zones and 4 different HGLs) that cover 13,000 ha of land. City Centre represents 4% of the North Surrey land mass and has 7% of the North Surrey population. City Centre straddles the zone boundary between the Kennedy and Whalley pressure zones (as shown on *Figure 8.2*) and includes 550 ha of land. As the City's well developed water network serves most of North Surrey, the ability of the water system to serve City Centre is heavily influenced by water demands of areas located outside City Centre.

The 2033 demand scenario in the North Surrey hydraulic model is considered the build out condition for areas external to City Centre. For the purposes of this study, we assumed that the existing and 2033 demands provided with the North Surrey Hydraulic Model are generally adequate for the areas outside of City Centre. A 2023 scenario was developed for the area external to City Centre through linear interpolation of the existing and 2033 demands. 2043 and 2083 horizons reflect the 2033 build out condition.

There are two facilities that were added to the North Surrey Hydraulic Model which were not in the original version:

- <u>**RCMP E-Division:**</u> The RCMP E-Division is expected to have approximately 3,200 employees at build out. For E-Division, we have utilized a conservative water demand of 320 L/employee/d.
- Jim Pattison Outpatient Care & Surgery Centre: The Jim Pattison Outpatient Care & Surgery Centre is expected to have a maximum of 2,300 patients on any given day up until 2043; this is expected to increase to 3,200 patients under build out conditions. The water demand for this facility was based on 650 L/patient/d.

Both of these facilities and their water demands have been applied to all scenarios.

8.0.8 Water Model Scenarios

Table 8.3 provides a summary of the model scenarios developed for this study.

No.	Scenario	Child Scenario
1	Existing BDD	2013 MDD + Fire Flow 2013 PHD
2	2023 BDD	2023 MDD + Fire Flow 2023 PHD
3	2033 BDD	2033 MDD + Fire Flow 2033 PHD
4	2043 BDD	2043 MDD + Fire Flow 2043 PHD
5	Build Out BDD	2083 MDD + Fire Flow 2083 PHD

Table 8.3 Model Scenarios

8.0.9 Methodology for Water Demand Generation

Based on the unit rates established, information provided by the City, as well as background models previously developed for the City Centre area, water demands were generated for the City Centre Plan. *Table 8.4* summarizes the methodology for water demand generation.

Year Horizon	Base Day Demand	Seasonal Demand	Max Day Demand	Peaking Factor	Peak Hour Demand	Fire Flow
	BDD	Seasonal	MDD	PF	PHD	FF
Existing	Calculated by multiplying PE* with Base Demand**	Based on seasonal demand unit rate*** and area for each land use type.	Taken from "North Surrey Hydraulic Model" (KWL, 2004; Updated AECOM 2008)	Obtained from "North Surrey Pump Station Study" (KWL, 2007)	PF x BDD + Peak Seasonal Water Demand	Fire Flows based on zoning taken from the "City of Surrey Criteria Manual" (2004), simplified to use Single-Family Residential [60 L/s] , Multi- Family Residential [200 L/s] , and Commercial and Institutional [200 L/s]
2023	Calculated by multiplying PE* with Base Demand**	Based on seasonal demand unit rate*** and area for each land use type.	Linear interpolation between existing MDD & 2033 MDD	Obtained from 2007 meter data from the Clayton area. IC PF from TOL & City of New Westminster	PF x BDD + Peak Seasonal Water Demand	Fire Flows based on zoning taken from the "City of Surrey Criteria Manual" (2004), simplified to use Single-Family Residential [60 L/s] , Multi- Family Residential [200 L/s] , and Commercial and Institutional [200 L/s]
2033	Calculated by multiplying PE* with Base Demand**	Based on seasonal demand unit rate*** and area for each land use type. At year 2033, City Centre seasonal demand usage does not change after this horizon.	Predicted 2033 BDD combined with Seasonal Water Demand from "2004 Water model: Model Development Study" (KWL)	Obtained from 2007 meter data from the Clayton area. IC PF from TOL & City of New Westminster	PF x BDD + Peak Seasonal Water Demand	Fire Flows based on zoning taken from the "City of Surrey Criteria Manual" (2004), simplified to use Single-Family Residential [60 L/s] , Multi- Family Residential [200 L/s] , and Commercial and Institutional [200 L/s]
2043	Calculated by multiplying PE* with Base Demand**	Based on seasonal demand unit rate*** and area for each land use type. At year 2033, City Centre seasonal demand usage does not change after this horizon.	Predicted 2043 BDD combined with Seasonal Water Demand from "2004 Water model: Model Development Study" (KWL)	Obtained from 2007 meter data from the Clayton area. IC PF from TOL & City of New Westminster	PF x BDD + Peak Seasonal Water Demand	Fire Flows based on zoning taken from the "City of Surrey Criteria Manual" (2004), simplified to use Single-Family Residential [60 L/s] , Multi- Family Residential [200 L/s] , and Commercial and Institutional [200 L/s]
Build Out	Calculated by multiplying PE* with Base Demand**	Based on seasonal demand unit rate*** and area for each land use type. At year 2033, City Centre seasonal demand usage does not change after this horizon.	Predicted 2083 BDD combined with Seasonal Water Demand from "2004 Water model: Model Development Study" (KWL)	Obtained from 2007 meter data from the Clayton area. IC PF from TOL & City of New Westminster.	PF x BDD + Peak Seasonal Water Demand	Fire Flows based on zoning taken from the "City of Surrey Criteria Manual" (2004), simplified to use Single-Family Residential [60 L/s] , Multi- Family Residential [200 L/s] , and Commercial and Institutional [200 L/s]

* PE = Population Equivalent

** Base demand unit rate = 320 L/c/d, North Surrey Pump Station Study (KWL, 2007)

*** Seasonal demand unit rate = 0.39 L/s/ha, 2004 Water Model: model Development Study (KWL, 2004)

Allowance for leakage = 10% of Base Demand

8.1 Design Criteria and Analysis

8.1.1 Evaluation and Design Criteria

Evaluation and design criteria are based on the City of Surrey's Design Criteria Manual (May 2004). The following minimum pressure criteria were used for the assessment of the water system:

- Maximum Day Demand plus Fire Flow (MDD+FF) Condition A minimum residual pressure of 14 m (20 psi) is required at all nodes in the system.
- Peak Hour Demand (PHD) Condition A minimum pressure of 28 m (40 psi) is required at all nodes in the system.

For the watermain upgrades, the recommended long term infrastructure improvement scenario assumes that existing distribution system infrastructure within City Centre will be upgraded to a minimum 250mm diameter size when the watermains reach the end of their useable life or as development proceeds. In addition, the City also requires that all watermains be looped within City Centre.

The developer must provide adequate service as per the City's Design Criteria and all development is required to upgrade the frontage main to the minimum 250mm diameter size and connect to the feedermain. Developers may also be required to replace all associated watermains from the feedermain to the development site.

8.1.2 Existing Water Model

The North Surrey hydraulic model represents the pipe network serviced by the Kennedy, Whalley and Newton pump stations. This network supplies water to over 300,000 residents in North Surrey. The North Surrey water model was originally developed in 2004 by Kerr Wood Leidal Associates. The model was updated as part of the *Various Water System Modelling Assignments within the ALR and North and South Surrey* project in 2008 by AECOM (formerly Earth Tech).

Specific details about the existing pipe network and system demands can be found in the *North Surrey Pump Station Study* completed by Kerr Wood Leidal Associates Limited in June 2007. We have assumed that the hydraulic model provided by the City is calibrated and has adequate population distributions and demand allocations for associated scenarios for areas outside of City Centre.

8.1.3 Existing Water System Assessment

It is important to note that there are some areas within City Centre that do not currently meet the PHD pressure criteria of a minimum 40 psi. If City Centre grows as predicted, existing pressure issues may increase if no improvements are made to the system.

8.1.4 Demand Allocation

The future City Centre water demands were developed at the parcel level. Demands were assigned from the GIS parcels to the nearest pipe and model node utilizing GIS special allocation tools. Segregation of demands by land use at the node level was maintained to facilitate manipulation of demands with peaking factors and diurnal patterns specific to land use.

Fire flow demands were assigned based on land use and fire flow demands previously identified. For nodes that are adjacent to several different land use zonings (i.e. multi-family residential and commercial), the higher required fire flow governed and was assigned to the node.

8.1.5 Future Water Model Demands

Table 8.5 summarizes water demands utilized in the North Surrey Hydraulic Model for each horizon.

Horizon Year	Demand	City Centre (L/s)	Outside City Centre (L/s)
	BDD	222	1,040
Existing	MDD	335	2,633
	PHD	624	4,353
	BDD	328	1,673
2023	MDD	468	3,985
	PHD	797	6,512
	BDD	436	2,208
2033	MDD	615	5,026
	PHD	1,019	8,170
	BDD	549	2,208
2043	MDD	727	5,026
	PHD	1,189	8,170
	BDD	945	2,214
Build Out	MDD	1,115	5,034
	PHD	1,762	8,182

 Table 8.5 North Surrey Model Demand Summary

8.1.6 Future Base Upgrades

The existing pipe network and pump station arrangement does not have capacity to support the projected future demand scenarios. Model runs identified large numbers of failed nodes in all of the Future PHD and Maximum Day plus Fire Flow (MDD+FF) scenarios. Without water system improvements the City will experience difficulty in meeting their peak hour and fire flow requirements.

All water model scenarios include the following zone boundary improvements.

Base Zone Boundary Improvements

The recommended adjustment to the boundary between the Kennedy (135m) and Whalley (155m) pressure zones, as reported in the *Whalley 155m Zone Extension* report, was included in all scenarios. The boundary shift into the Kennedy zone results in an increase in demand in the Whalley zone to address low water pressure concerns near the zone boundary during periods of peak water demands.

8.1.7 Future Fleetwood Reservoir

The future Fleetwood Reservoir being constructed by Metro Vancouver will provide a source of water supply to part of the 135m zone, thereby freeing up capacity at the Whalley Station for City Centre. The reservoir is planned to be in operation before the year 2023. For this analysis it is assumed that the future Fleetwood Reservoir and the existing Fleetwood Pump Station with the installed capacity of 1,250L/s at 135m HGL will be capable of meeting the demand in 2023. Further upgrades of Fleetwood Pump Station and the network in Fleetwood would be required after 2023, and the costs will be covered by City wide DCCs which are not assessed in this report.

8.2 Recommended Improvements and Costs

8.2.1 Bulk Supply and Feedermain Improvements

A summary of the demands for the Whalley (155m) and Kennedy (135m) zones in City Centre is provided below in *Table 8.6*.

Horizon	Whalley (155m) Zone in City Centre (L/s)	Whalley (155m) Zone Total (L/s)	Kennedy (135m) Zone in City Centre (L/s)	Kennedy (135m) Zone Total (L/s)
Existing	217	374	406	1,080
2023	294	482	524	1,322
2033	337	574	688	1,694
2043	386	623	806	1,814
Build Out	527	763	1,247	2,259

Table 8.6 Peak Hour Demand Summary by Zone

Note: City Centre zone demand include periphery nodes such that sum does not equal values in Table 8.5

To service the increase in water use leading up to the build out condition, the water servicing plan outlined in this Section, includes upgrades to infrastructure located both inside and outside the City Centre Plan boundaries. Recommendations for servicing are based on a 2023 in service date for the future MV Fleetwood Reservoir and changes to the Kennedy/Whalley pressure zone boundaries.

Table 8.7 Recommended Upgrades – Bulk Supply and Feedermains

Horizon Year	Major Infrastructure Upgrades	Estimated Cost
2023	Replace existing 600mm and 750mm diameter watermain with 2,312m of 900mm diameter ductile iron feedermain from the Whalley Pump Station, along 104 Avenue to King George Boulevard.	\$6,936,000
2033	Install 365m of 750mm dia. ductile iron feedermain, extending from the 900 mm feedermain at King George Boulevard and 104 Avenue, along 104 Avenue to University Drive.	\$876,000
2043	None	\$0
	Upgrade Whalley PS to its firm capacity of 3,020 L/s with one additional 600 L/s pump	\$750,000
Build Out	Upgrade Whalley Booster PS to its firm capacity of 900 L/s with one additional 250 L/s pump	\$500,000
	TOTAL	\$9.062.000

The proposed system utilizes water from the Whalley Pump Station to meet the increasing water demands in City Centre. This system employs a feedermain that directly connects the Whalley Pump Station to the Kennedy 135 m HGL pressure zone, and requires Whalley Main and Whalley Booster pump stations to be upgraded. The recommended upgrades are graphically presented in *Figure 8.2*.

8.2.2 Distribution and Major Grid Main Capacity Improvements

Pipe capacity driven network improvements are required for servicing the City Centre. The capacity based improvement plan assumes that existing distribution mains that reach the end of their useful life are replaced by 250 mm diameter watermains as part of the City's ageing infrastructure replacement program. Only distribution mains that require capacity improvements prior to their ageing infrastructure replacement date are included in the capacity improvement program. Current City policy is to contribute to increases in pipe size after the Developer has paid for the size of main they need for the development. All upsizing costs are paid with DCCs. **Table 8.8** summarizes the cost for upgrades to the water network.

Upgrade Year	# of Pipes	Total Length (m)	Total Cost	DCC Eligible
Existing	26	2,960	\$3,140,300	\$71,150
2023	-	-	-	-
2033	-	-	-	-
2043	-	-	-	-
Build Out	15	768	\$856,500	\$185,550
Totals	49	3,728	\$3,996,800	\$256,700

Table 8.8 Summary of Distribution and Major Grid Main Capacity Upgrades

The minimum pipe diameter for a City Centre pipeline is 250 mm as per the City's Standard. A summary of all the distribution network capacity upgrades is provided in *Appendix B* along with a summary of the major system and DCC-eligible upgrades.

As shown in *Table 8.8*, the water model predicts that upgrades to distribution and major grid mains are required for both the existing and build out condition as properties within the service area become more densely developed. *Figure 8.3* shows approximately 3.6 km of capacity related upgrades that are capacity driven based on fire flow requirements. There are four new connections added to increase the water distribution network redundancy and looping. *Figure 8.4* shows 768m of replacement watermain required due to PHD and MDD+FF capacity concerns predicted for the build out condition.

8.2.3 PHD and MDD+FF Results

Peak hour demand (PHD) pressures and velocities as well as maximum day demand plus fire flow (MDD+FF) pressures are shown for each horizon in *Figures 8.5 to 8.14*, and are further explained below.

Existing Horizon

Results for the PHD and MDD+FF model runs are shown in *Figures 8.5 and 8.6* respectively. The residential area near 132 Street and 100 Avenue marginally meets the peak hour pressure requirement of 40psi. This is due to the local high elevation relative to the rest of the Kennedy 135 m HGL pressure zone. Fire flow requirements were not met at 12 locations within City Centre. The fire flow requirements at these locations could be met by upgrading all mains to the minimum City Centre size of 250mm diameter.

2023 Horizon

Results for the PHD and MDD+FF model runs are shown in *Figures 8.7 and 8.8* respectively. The residential area near 132 St and 100 Avenue marginally meets the peak hour pressure requirement of 40 psi. This is due to the local high elevation relative to the rest of the Kennedy 135 m HGL pressure zone. This observation applies to each horizon. Fire flow requirements were not met at 7 locations within City Centre where the multi-family flow requirement is 200 L/s. The fire flow requirements at these locations could be met by upgrading all mains to the minimum City Centre size of 250 mm.

2033 Horizon

Results for the PHD and MDD+FF model runs are shown in *Figures 8.9 and 8.10*. Fire flow requirements were not met at 10 locations within City Centre where the multi-family flow requirement is 200 L/s. The fire flow requirements at these locations could be met by upgrading all mains to the minimum City Centre size of 250 mm.

2043 Horizon

Results for the PHD and MDD+FF model runs are shown in *Figures 8.11 and 8.12*. Fire flow requirements were not met at 11 locations within City Centre where the multi-family flow requirement is 200 L/s. The fire flow requirements at these locations could be met by upgrading all mains to the minimum City Centre size of 250 mm.

Build Out Horizon

Results for the PHD and MDD+FF model runs are shown in *Figures 8.13 and 8.14*. There are a number of nodes such as those located at 133 St north of 100Avenue, which is an elevated area and does not meet the peak hour pressure requirement of 40psi. Due to the elevation of these locations, the low pressures cannot be resolved without very large infrastructure upgrades. The minimum peak hour pressure within City Centre is 36 psi. Fire flow requirements were not met at 4 locations within City Centre where the multi-family flow requirement is 200 L/s. The fire flow requirements at these locations could be met by upgrading all mains to the minimum City Centre size of 250 mm.

The recommended water servicing strategy for City Centre from present day to build out is a marriage of the recommended bulk supply and feedermain improvements and the recommended distribution and major grid main improvements detailed in *Sections 8.2.1* and *8.2.2*. It should be noted that in order to meet the fire flow requirement of 200L/s for multi-family developments at all locations, the recommended system improvements, as well as upgrading of all local distribution mains to the City Centre minimum size of 250mm diameter is required. A detailed schedule of recommended water system improvements is tabulated in *Appendix B* including existing infrastructure description (if applicable), replacement or new infrastructure description and estimated implementation date and cost. A summary of estimated long term implementation cost is presented in *Table 8.9*. All of the infrastructure improvements are directly related to increases in City Centre water demand and 100% attributable to City Centre redevelopment.
Recommended Improvements	Total Cost Attributable to City Centre
Bulk Supply and Feedermain Improvements	\$9,062,000
Distribution & Major Grid Main Capacity Upgrades	\$3,996,800
Capacity Improvement Total	\$13,058,800

Table 8.9 Recommended Improvement Program Cost Summary

A snapshot of the overall system capacity versus demand with the water servicing strategy and the Build Out distribution network upgrades implemented is provided in *Table 8.10* below.

Horizon Year	North Surrey Demand (L/s)	City Centre Demand (L/s)	Pumped Supply* (L/s)	Kennedy PS (L/s)	Newton PS (L/s)	Fleetwood PS (L/s)	Whalley PS (L/s)	Whalley Booster PS (L/s)
				PHD Flov	vs			
Existing	4,977	624	4,669	1,315	1,381	-	1,973	434
2023	7,309	797	6,541	1,392	1,882	1,882 1,223		479
2033	9,189	1,019	8,279	1,623	2,345 1,969		2,342	582
2043	9,359	1,189	8,446	1,657	2,350	1,991	2,448	655
Build Out	9,944	1,762	9,043	1,756	2,366	1,978	2,943	846
			Firm P	ump Station	Capacities			
Existing	-	-	6,790	2,100	2,200	-	2,490	650
2023	-	-	8,890	2,100	2,200	1,250	2,490	650
2033	-	-	8,890	2,100	2,200	2,100	2,490	650
2043	-	-	8,890	2,100	2,200	2,100	2,490	650
Build Out	-	-	9,420	2,100	2,200	2,100	3,020	900

Table 8.10	Demand vs Capacity
------------	--------------------

*Does not include Whalley Booster PS

8.3 10-Year Servicing Plan

DCC eligible projects for build out of the City Centre Plan total \$9,318,700 with some of the upgrades already included in the current 10-Year Servicing Plan (2014 – 2023). It is recommended that all of the DCC eligible projects be included in future 10-Year Servicing Plans. There may be projects shown in Figure 8.3 and 8.4 that have already been constructed, thus are not included in the following list.

10 Year Servicing Plan ID	Pump Stations	# of New Pumps		Upgrade Year	Unit Cost (\$/m)	Cost
-	Add 1 – 600 L/s pump to Whalley Main Pump Station*	1		2083	\$750,000	\$750,000
-	Add 1 – 250 L/s pump to Whalley Booster Pump Station*	1		2083	\$500,000	\$500,000
	Feedermains	Length (m)	Dia. (mm)	Upgrade Year	Unit Cost (\$/m)	Cost
13901	104A Avenue: Whalley Pump Station- 144 Street	525	900	2023	\$3,000	\$1,575,000
13901	144 Street 104A Avenue - 104 Avenue	135	900	2023	\$3,000	\$405,000
11510	104 Avenue: 144 Street - King George Boulevard	1,652	900	2023	\$3,000	\$4,956,000
	104 Avenue: King George Boulevard - University Drive	365	750	2033	\$2,400	\$876,000
	B	ulk Supply	and Fe	eedermain	Total Cost	\$9,062,000

List of DCC Eligible Projects

No land acquisition costs required. A spare pump bay is available at each pump station.

Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

				Prop.	Unit Cost	Cost
10 Year	Distribution and Major Grid	Priority	Length	Dia.	(\$/linear	
Plan ID	Main Capacity Upgrades		(m)	(mm)	m)	
					* :	• • • • • • • •
-	104 Avenue: lane - east side KG Blvd New Connection	N	37	350	\$1,200	\$44,400
13799	King George Blvd. (east side)	U/N	8	300	\$50	\$400
	South of 104 Avenue		64	300	\$50	\$3,200
7792 K 9	King George Blvd: 96 Avenue - 99 Avenue	U/N	249	300	\$50	\$12,450
			214	300	\$50	\$10,700
-	Old Yale Rd west of University	N	81	450	\$1,400	\$113,400
	Drive	N	13	450	\$1,400	\$18,200
11510	University Drive at 104 Avenue	N	9	450	\$1,400	\$12,600
		N	6	450	\$1,400	\$8,400
-	University Drive at Old Yale Rd - New Connection	N	20	450	\$1,400	\$28,000
-	96 Avenue: 137A St - 137B St	U/N	99	300	\$50	\$4,950
		TOTAL		-		\$256,700

List of DCC Eligible Projects continued

Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

U = upsizing contribution

N = NCP dependent

APPENDIX B: WATER DETAILS

- Existing Water Equivalent Population
- 2023 Water Equivalent Population
- 2033 Water Equivalent Population
- 2043 Water Equivalent Population
- Build Out Water Equivalent Population
- □ Base Day Demand (BDD)
- □ Seasonal Demand and Max Day Demand (MDD)
- Peaking Factors (PF) and Peak Hour Demand (PHD)
- □ Fire Flow Demand (FF)
- □ Water Model and GIS Discrepancies
- □ Capacity Upgrades: Bulk Supply and Feedermains
- Existing Capacity Upgrades: Distribution and Major Grid Mains
- Build Out Capacity Upgrades: Distribution and Major Grid Mains
- DCC Eligible Upgrades

B1. Existing Water Equivalent Population

Residential

The existing residential population was provided by the City Planning Department and adjusted to include the addition of secondary suites (1.93 additional people per single family residence) to 38% of all existing single family homes, for a total population of 33,812.

Commercial

The existing commercial employment population was provided by the City Planning Department as 23,585.

Institutional

Equivalent institutional populations were generated by units and populations provided by the City, City School Board, and Fraser Health Authority. The per capita demand utilized in this study for the calculation of Base Demand is 320 litres/capita/day (L/c/d) and includes an allowance for leakage (estimated at approximately 10%). This unit rate was developed as part of the 2005 KWL *Grandview Pump Station Pre-Design Report* and was utilized in the 2007 KWL *North Surrey Pump Station Study*.

A unit base demand rate of 320 L/cap/day was used to convert the institutional units to equivalent populations, which is shown in *Table 1*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	500 beds	900 L/bed/d	1,406
Laurel Place Retirement Home	191 beds	650 L/bed/d	388
Forsyth Road Elementary School	271 students	45 L/student/d	38
AHP Mathew Elementary School	426 students 45 L/stude		60
Queen Elizabeth Secondary School	1435 students	90 L/student/d	404
Cherington Place Retirement Home	75 beds	650 L/bed/d	152
Parks (irrigation)	27.8 ha	3,520 l/ha/d	306
		Total =	2,754

Table 1 Existing Water Institutional Population Equivalent

B2. 2023 Water Equivalent Population

Residential

The 2023 residential population was provided by the City and adjusted to include the addition of secondary suites (1.93 additional people per single family residence) to 100% of all single family homes, for a total population of 52,442.

Commercial

Commercial employment population was provided by the City Planning Department to be 27,670 for 2023. The commercial employment populations developed by the City Planning Department were compared with a generated equivalent commercial population based on commercial floor space as recommended by City Water Division. The greater population was then taken to be the higher water demand projection.

The commercial floor space in GIS was converted to an equivalent population based on 200 person population equivalent per 10,000 m² (1pp/50 m²) of floor space which includes an allowance for visitors as directed by City staff. An equivalent commercial population of 33,064 was calculated for 2023. This value was utilized to develop water demand projections.

Institutional

Equivalent institutional populations were generated by units and populations provided by the City, City School Board, and Fraser Health Authority. Similar to the method used for existing, a unit base demand rate of 320 L/cap/day was used to convert the institutional units to equivalent populations, which is shown in *Table 2*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	650 beds	900 L/bed/d	1,828
Laurel Place Retirement Home	191 beds	650 L/bed/d	388
Forsyth Road Elementary School	350 students	45 L/student/d	49
AHP Mathew Elementary School	550 students	45 L/student/d	77
Queen Elizabeth Secondary School	1854 students	90 L/student/d	521
Cherington Place Retirement Home	75 beds	650 L/bed/d	152
Parks (irrigation)	27.8 ha	3,520 l/ha/d	306
		Total =	3,322

Table 2 2023 Water Institutional Population Equivalent

B3. 2033 Water Equivalent Population

Residential

The 2033 residential population was provided by the City and adjusted to include the addition of secondary suites (1.93 additional people per single family residence) to 100% of all single family homes, for a total population of 71,858.

Commercial

The methodology described in the 2023 horizon was used to generate equivalent commercial populations for 2033. A Commercial employment population was provided by the City Planning Department as 32,332 for 2033.

The commercial floor space in GIS was converted to an equivalent population based on 200 person population equivalent per 10,000 m² (1pp/50 m²) of floor space which includes an allowance for visitors as directed by City staff. An equivalent commercial population of 42,543 was calculated for 2033. This value was utilized to develop water demand projections.

Institutional

Equivalent institutional populations were generated by units and populations provided by the City, City School Board, and Fraser Health Authority. Similar to the method used for existing and 2023, a unit base demand rate of 320 L/cap/day was used to convert the institutional units to equivalent populations, which is shown in *Table 3*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	800 beds	900 L/bed/d	2,250
Laurel Place Retirement Home	191 beds	650 L/bed/d	388
Forsyth Road Elementary School	437 students	45 L/student/d	61
AHP Mathew Elementary School	686 students	45 L/student/d	96
Queen Elizabeth Secondary School	2,312 students	90 L/student/d	650
Cherington Place Retirement Home	75 beds	650 L/bed/d	152
Parks (irrigation)	27.8 ha	3,520 l/ha/d	306
		Total =	3,904

Table 3 2033 Water Institutional Population Equivalent

B4. 2043 Water Equivalent Population

Residential

The 2043 residential population of was provided by the City and adjusted to include the addition of secondary suites (1.93 additional people per single family residence) to 100% of all single family homes, for a total population of 92,106.

Commercial

The methodology described in the 2023 horizon was used to generate equivalent commercial populations for 2043. A Commercial employment population was provided by the City Planning Department as 37,742 for 2043.

The commercial floor space in GIS was converted to an equivalent population based on 200 person population equivalent per 10,000 m² (1pp/50 m²) of floor space which includes an allowance for visitors as directed by City staff. An equivalent commercial population of 52,022 was calculated for 2043. This value was utilized to develop water demand projections.

Institutional

Equivalent institutional populations were generated by units and populations provided by the City, City School Board, and Fraser Health Authority. Similar to the method used for existing, 2023, and 2033 a unit base demand rate of 320 L/cap/day was used to convert the institutional units to equivalent populations, which is shown in *Table 4*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	800 beds	900 L/bed/d	2,250
Laurel Place Retirement Home	191 beds	650 L/bed/d	388
Forsyth Road Elementary School	488 students	45 L/student/d	69
AHP Mathew Elementary School	766 students	45 L/student/d	108
Queen Elizabeth Secondary School	2,581 students	90 L/student/d	726
Cherington Place Retirement Home	75 beds	650 L/bed/d	152
Parks (irrigation)	27.8 ha	3,520 l/ha/d	306
		Total =	3,998

Table 4 2043 Water Institutional Population Equivalent

B5. Build Out Water Equivalent Population

Residential

The Build Out residential population was provided by the City and adjusted to include the addition of secondary suites (1.93 additional people per single family residence) to 100% of all single family homes, for a total population of 160,599.

Commercial

The methodology described in the 2023 horizon was used to generate equivalent commercial populations for 2083. A Commercial employment population was provided by the City Planning Department as 56,572 for 2083.

The commercial floor space in GIS was converted to an equivalent population based on 200 person population equivalent per 10,000 m² (1pp/50 m²) of floor space which includes an allowance for visitors as directed by City staff. This generated a commercial population of 89,937 at full build out. This value was utilized to develop water demand projections.

Institutional

Equivalent institutional populations were generated by units and populations provided by the City, City School Board, and Fraser Health Authority. Similar to the method used for existing, 2023, 2033, and 2043 a unit base demand rate of 320 L/cap/day was used to convert the institutional units to equivalent populations, which is shown in *Table 5*.

Facility	Units	Flow Per Unit	Institutional Equivalent Population
Surrey Memorial Hospital	800 beds	900 L/bed/d	2,250
Laurel Place Retirement Home	191 beds	650 L/bed/d	388
Forsyth Road Elementary School	813 students	45 L/student/d	114
AHP Mathew Elementary School	1,278 students	45 L/student/d	180
Queen Elizabeth Secondary School	4,305 students	90 L/student/d	1,211
Cherington Place Retirement Home	75 beds	650 L/bed/d	152
Parks (irrigation)	27.8 ha	27.8 ha 3,520 l/ha/d	
		Total =	4,601

Table 5 2083 (Build Out) Water Institutional Population Equivalent

B6. Base Day Demand (BDD)

The BDD for all horizons are developed through multiplying the per capita BDD unit rate (320 l/c/d) by the residential, commercial, and institutional equivalent populations.

B7. Seasonal Demand and Max Day Demand (MDD)

The seasonal demand is based on the unit rate of 0.39 l/s/ha applied to the area for each corresponding land use as developed in the 2004 Water Model: Model Development Study report.

The existing MDD that was developed for the *North Surrey Pump Station Study* was utilized as the existing scenario in this study. 2023 MDD was generated by interpolating between existing and 2033 MDD. 2033, 2043, and build out MDD was developed by combining the BDD with seasonal water demand. The total seasonal water demand is considered to not change from beyond the 2033 horizon.

However, the distribution of seasonal demand between residential and institutional/commercial (IC) sectors does change as City Centre shifts toward high density mixed use at build out. In residential/commercial mixed use areas, we have assigned the seasonal water demand to the residential component.

At Build Out, the Commercial water use sector has no seasonal water demand as all commercial development has a residential component that includes seasonal water demand in this scenario.

B8. Peaking Factors (PF) and Peak Hour Demand (PHD)

PHD was developed by combining the estimated peak BDD and peak seasonal water demand. Peaking factors provided with the North Surrey Hydraulic Model were utilized only for the 2013 existing horizon. All future horizons utilize peaking factors developed from 2007 meter data from the Clayton area of Surrey.

Peaking factors were developed for both the BDD and seasonal demands to better represent the difference between indoor water use and irrigation peaks. As City Centre population density increases, single family residential areas will be replaced with mid and high rise residential. Irrigation demands will be relatively independent of population for high density neighbourhoods and maintaining separate residential (Base) and irrigation (seasonal) demands will provide a more accurate estimate of future PHD.

Base demand PHD peaking factors were further divided into residential and commercial water use sectors due to the significant differences in water use between these sectors. The residential base demand peaking factor was estimated to be 1.7 using November 2007 bulk meter data from Clayton as a basis. For commercial and institutional land uses, the BDD peaking factor was estimated to be 1.2 based on previous studies for the Township of Langley and City of New Westminster.

A separate peaking factor of 2.1 was estimated for the seasonal demand based on August 2007 bulk meter data from Clayton. The seasonal demand peaks were assumed to be similar in residential, commercial, and institutional land uses.

B9. Fire Flow Demand (FF)

Fire flow demands are based on land use zoning. The City of Surrey Design Criteria Manual (2004) includes 52 separate zonings with five different fire flow values. For modelling purposes, the fire flow demands in the City of Surrey Engineering Department Design Criteria Manual (2004) were simplified to include three basic land uses in City Centre with three different fire flow values:

- Single Family Residential = 60 L/s;
- Multi-Family Residential = 200 L/s; and
- Commercial and Institutional = 200 L/s.

This simplification will overestimate fire flow required for duplex residential, neighbourhood commercial and selfservice gas station properties. However, there are few existing properties impacted by this simplification and future City Centre is largely dense commercial and residential development with higher fire flow requirements. Therefore, the impact of this simplification is marginal and does not impact the medium and long term infrastructure requirements in City Centre.

B10. Water Model and GIS Discrepancies

	Water Model Discrepancies with COSMOS							
	Description	Old Pipe IDs	New Pipe IDs					
	Connected 450/300mm main on Haddon Rd to 150mm main on King George Blvd.	106942	P-19040					
1	- additional affected pipes	107020	P-19038					
			P-19039					
2	Replaced 150mm main on King George Blvd. north of Haddon Rd with 300mm main		P-19051					
	- additional affected pipes	107006	P-19036					
	Added 300mm connection across Haddon Rd at 10977 University Drive		P-19037					
3	- additional affected pipes	106960	P-19033					
			P-19034					
4	Connected 300mm main on King George Blvd. with 150mm main on 100 Avenue	105728	P-19027					
	- additional affected pipes		P-19028					
F	Added 300mm connection on 137B St across Fraser Hwy to 96 Ave		P-19021					
5			P-19022					

B11. Existing Scenario - Distribution & Major Grid Main Capacity Upgrades

Location	Pipe ID	Ex Dia (mm)	Ex Mat erial	Year Install ed	Length (m)	Prop. Dia (mm)	Unit Cost	Cost	NPV (3%)
104 Ave b/w lane and east side KG Blvd New Connection	P-19086	-	-	-	37	350	\$1,200	\$44,400	\$44,400
King George Blvd (east side)	105465	200	DI	2002	8	300	\$1,100	\$8,800	\$8,800
south of 104 Ave	P-18982	150	DI	1964	64	300	\$1,100	\$70,400	\$70,400
102 Ave by 139 St and 1374 St	105611	150	AC	1970	289	250	\$1,050	\$303,450	\$303,450
	105612	150	AC	1970	12	250	\$1,050	\$12,600	\$12,600
King George Blvd. at 99 Ave - New Connection	FUT- 19054	-	-	-	80	250	\$1,050	\$84,000	\$84,000
1004 Ave h/w 1324 St and 133 St	105893	150	AC	1959	39	250	\$1,050	\$40,950	\$40,950
	105894	150	AC	1959	89	250	\$1,050	\$93,450	\$93,450
100A Ave to Old Yale Rd - New Connection	FUT- 19052	-	-	-	102	250	\$1,050	\$107,100	\$107,100
132A St porth of 100 Ave	105895	150	AC	1959	100	250	\$1,050	\$105,000	\$105,000
	105896	150	AC	1959	94	250	\$1,050	\$98,700	\$98,700
Binnie Lane b/w Bentley Rd and Grosvenor Rd	107027	150	DI	1975	182	250	\$1,050	\$191,100	\$191,100
Bentley Rd b/w King George Blvd. and Binnie Rd	107215	150	CI	1964	31	250	\$1,050	\$32,550	\$32,550
North side KG Blvd. b/w Bentley Rd and Gateway Dr	P-19017	150	DI	1990	221	250	\$1,050	\$232,050	\$232,050
King George Blvd. b/w 96 Ave	106035	200	DI	1963	249	300	\$1,100	\$273,900	\$273,900
and 99 Ave	105764	200	DI	1963	214	300	\$1,100	\$235,400	\$235,400
Harper Rd b/w Bentley Rd and Grosvenor Rd	106780	50	PV	1992	2	250	\$1,050	\$2,100	\$2,100
King George Blvd. north of 108 Ave	106951	150	CI	1964	245	250	\$1,050	\$257,250	\$257,250
102 Ave west of University Drive	105681	150	DI	1973	102	250	\$1,050	\$107,100	\$107,100
137B St b/w 97A Ave and 97B Ave	105524	150	DI	1980	86	250	\$1,050	\$90,300	\$90,300
137A St b/w 101A Ave and 102 Ave	105590	150	AC	1962	79	250	\$1,050	\$82,950	\$82,950
139A St north of 102 Ave	105605	150	DI	1979	218	250	\$1,050	\$228,900	\$228,900
137A St b/w 97A Ave and 97B	105638	150	DI	1971	14	250	\$1,050	\$14,700	\$14,700
Ave	105639	150	DI	1971	99	250	\$1,050	\$103,950	\$103,950
97A Ave b/w 137A St and 137B St	105630	150	DI	1971	81	250	\$1,050	\$85,050	\$85,050
Haddon Rd b/w KG Hwy and 133A St	P-19036	150	AC	1963	223	250	\$1,050	\$234,150	\$234,150
Sub-Total \$3,140,300									

Build Out Scenario - Distribution & Major Grid Main Capacity Upgrades

Location	Pipe ID	Ex Dia (mm)	Ex Material	Year Installed	Length (m)	Prop. Dia (mm)	Unit Cost	Cost	NPV (3%)
	105768	150	DI	1972	81	450	\$1,400	\$113,400	\$14,322
Old Yale Rd west of	105912	150	DI	1976	13	450	\$1,400	\$18,200	\$2,299
University Drive	105682	150	DI	2001	7	250	\$1,050	\$7,350	\$928
	105683	150	DI	1972	24	250	\$1,050	\$25,200	\$3,183
137A St b/w 101 Ave and 101A Ave	105589	150	AC	1962	95	250	\$1,050	\$99,750	\$12,598
Bentley Rd b/w Binnie Lane	107018	150	CI	1964	64	250	\$1,050	\$67,200	\$8,487
and Hilton Rd.	107216	150	CI	1964	93	250	\$1,050	\$97,650	\$12,333
97A Ave b/w 137 St and 137A	105632	150	DI	1971	76	250	\$1,050	\$79,800	\$10,079
St	105631	150	DI	1971	3	250	\$1,050	\$3,150	\$398
Lipivoraity Drive et 104 Ave	107104	350	DI	1991	9	450	\$1,400	\$12,600	\$1,591
University Drive at 104 Ave	107105	350	DI	1991	6	450	\$1,400	\$8,400	\$1,061
University Drive at Old Yale Rd - New Connection	P-19070	-	-	-	20	450	\$1,400	\$28,000	\$3,536
King George Hwy b/w Haddon	P-19016	150	DI	1987	148	250	\$1,050	\$155,400	\$19,627
Rd and Gateway Dr.	P-19039	150	CI	2002	30	250	\$1,050	\$31,500	\$3,978
96 Ave b/w 137A St and 137B						*			
St.	P-19019	150	DI	1964	99	300	\$1,100	\$108,900	\$13,754
		Sub-total						\$856,500	

Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

Note for Table B11 and B12 - Only distribution mains that require capacity improvements prior to their aging infrastructure replacement date are included in the capacity improvement program. Existing distribution mains that reach the end of their useful life are replaced by 250mm diameter watermains as part of the City's ageing infrastructure replacement program.

B12. DCC Eligible - Major Grid Mains Capacity Upgrades

Ten Year Servicing Plan (2014 – 2023) Project ID	Location	Priority	Pipe ID	Ex Dia. (mm)	Ex Material	Year Installed	Length (m)	Prop. Dia. (mm)	Unit Cost	Cost	NPV (3%)
				Exist	ing Scenario	O Upgrades					
-	104 Ave b/w lane and east side KG Blvd New Connection	N	P-19086	-	-	-	37	350	\$1,200	\$44,400	\$44,400
12700	King George	1.1/N1	105465	200	DI	2002	8	300	\$50	\$400	\$400
13799	south of 104 Ave	U/N	P-18982	150	DI	1964	64	300	\$50	\$3,200	\$3,200
7700	King George	11/51	106035	200	DI	1963	249	300	\$50	\$12,450	\$12,450
7792	and 99 Ave	U/N	105764	200	DI	1963	214	300	\$50	\$10,700	\$10,700
	•			Existin	g Scenario S	ub-Total	572			\$71,150	\$71,150
				Build	Out Scenari	o Upgrades					
	Old Yale Rd	Ν	105768	150	DI	1972	81	450	\$1,400	\$113,400	\$14,322
-	University Drive	Ν	105912	150	DI	1976	13	450	\$1,400	\$18,200	\$2,299
11510	University Drive	Ν	107104	350	DI	1991	9	450	\$1,400	\$12,600	\$1,591
11510	at 104 Ave	Ν	107105	350	DI	1991	6	450	\$1,400	\$8,400	\$1,061
-	University Drive at Old Yale Rd - New Connection	Ν	P-19070	-	-	-	20	450	\$1,400	\$28,000	\$3,536
	96 Ave b/w 137A										
	St and 137B St	U/N	P-19019	150	DI	1964	99	300	\$50	\$4,950	\$625
				Build	Out Scenario	Sub-Total	228			\$185,550	\$23,435
				Exis	sting & Build	d Out Total	800			\$256,700	\$94,585

Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

 $U = upsizing \ contribution$ $N = NCP \ dependent$

B13. DCC Eligible - Bulk Supply and Feedermain Capacity Upgrades

Pump Stations	# of I Pum	lew Ips	Upgrade Year	Unit Cost (\$)	Cost	NPV (3%)	Ten Year Servicing Plan (2014-2023) Project ID
Add 1 – 600 L/s pump to Whalley Main Pump Station*	1		2083	750,000	\$ 750,000	\$ 97,565	-
Add 1 – 250 L/s pump to Whalley Booster Pump Station*	1		2083	500,000	\$ 500,000	\$ 65,043	-
			Pump Static	ons Subtotal	\$ 1,250,000	\$ 162,608	
Feedermains	Length (m)	Dia. (mm)	Upgrade Year	Unit Cost (\$/m)	Cost	NPV (3%)	
104A Ave. b/w Whalley PS and 144 St.	525	900	2023	3,000	\$ 1,575,000	\$ 1,207,106	13901
144 St. b/w 104A Ave. and 104 Ave.	135	900	2023	3,000	\$ 405,000	\$ 310,399	13901
104 Ave. b/w 144 St. and King George Blvd.	1,652	900	2023	3,000	\$ 4,956,000	\$ 3,798,361	11510
104 Ave. b/w King George Blvd. and University Drive	365	750	2033	2,400	\$ 876,000	\$ 499,571	-
	2,677		Feederm	ain Subtotal	\$ 7,812,000	\$ 5,815,437	
	В	ulk Supp	ly and Feede	ermain Total	\$ 9,062,000	\$ 5,978,045	

No land acquisition costs required. A spare pump bay is available at each pump station. Cost estimates calculated from City of Surrey construction unit rates for NCPs and include project contingency.

B15. City Centre Projected Growth Areas for Development Staging Scenarios

			2013			2023			2033			2043			2083	
	# of SF Parcels (2007)	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop	% Redeveloped	% SS	SS Pop
Polygon A	72	0%	38%	53	65%	100%	49	21%	100%	110	9%	100%	126	5%	100%	132
Polygon B	280	0%	38%	205	14%	100%	465	22%	100%	422	23%	100%	416	41%	100%	319
Polygon C	452	0%	38%	331	5%	100%	829	13%	100%	759	15%	100%	742	67%	100%	288
Polygon D	286	0%	38%	210	2%	100%	541	2%	100%	541	6%	100%	519	90%	100%	55
Existing	901	0%	38%	661	0%	100%	1,739	0%	100%	1,739	0%	100%	1,739	0%	100%	1,739
Total	1,991			1,460			3,622			3,570			3,542			2,533

2013	2023	2033	2043	2083
32,352	48,820	68,288	88,564	158,066
1,460	3,622	3,570	3,542	2,533
33,812	52,442	71,858	92,106	160,599
	2013 32,352 1,460 33,812	2013 2023 32,352 48,820 1,460 3,622 33,812 52,442	2013 2023 2033 32,352 48,820 68,288 1,460 3,622 3,570 33,812 52,442 71,858	2013 2023 2033 2043 32,352 48,820 68,288 88,564 1,460 3,622 3,570 3,542 33,812 52,442 71,858 92,106

A-2.4

Surrey City Centre Heritage Review

Centre: age Kevlew Surrey **erit**

July 2011

Contents

Α. **Study Area**

Β. **Historical Context**

- **Kwantlen First Nation** 1.
- 2. Settlement & Development

C. **Historic Street Names**

- 1. East-West Roads in Surrey City Centre
- 2. North-South Roads in Surrey City Centre

D. **Identified Heritage Resources**

- 1. St. Mary's Ukrainian Greek-Orthodox Church
- 2. Goodmanson Building (Round Up Cafe)
- 3. **Roll's Carpenter Shop**
- 4. **King George Boulevard**
- 5. Ponderosa Pine (Pinus ponderosa)
- Giant Sequoia (Sequoiadendron giganteum) 6.

Ε. **Potential Heritage Resources**

- 1. **Rickshaw Sign**
- 2. 13667 Grosvenor Road
- 3. 13683 Grosvenor Road
- 4. 13697 Grosvenor Road
- 5. 13761 Grosvenor Road
- 6. 13821 Grosvenor Road
- 7. 13842 Grosvenor Road
- 8. 13834 Grosvenor Road
- 9. 13723 Larner Road
- 10. 13809 Berg Road

- 11. 13753 108 Avenue
- 12. 13642 Larner Road
- 13. 13674 111 Avenue
- 14. 13756 112 Avenue
- 15. 11122 134A Street
- 16. 10689 140 Street
- 17. 10504 139 Street
- 18. 13219 + 13229 104 Avenue
- 19. 9569 134A Street
- 20. 13240 100 Avenue

F. **Potential Heritage Interpretation Opportunities**

- 1. Whalley's Corner
- Binnie Block 2.
- 3. The Junction
- 4. **Dell Shopping Centre**
- The "Whoopee-Dipper" & Peat Bog 5.
- **Bolivar Mansion**

6.

9.

- 7. **Bolivar Hatcheries** 8.
 - North Surrey Rec Centre
 - Whalley Little League
- **Bolivar Creek** 10.
- 11. Quibble Creek

A. Study Area

The City Centre Plan Update study area includes approximately 388 hectares (960 acres) of land (see map below). It is generally rectangular in shape, with King George Boulevard running through its centre, and is generally bounded by 112 Avenue to the north, 96 Avenue to the south, 132 Street to the west and 140 Street to the east.

B. Historical Context

1. Kwantlen First Nation

The Kwantlen First Nation came to the Surrey-New Westminster area many hundreds of years ago. By three hundred years ago they were a powerful nation with a large community called Squaimetl (sx_woyimehl) where New Westminster is now. A smaller fishing camp, Kikait (Qiqá:yt), was on the Surrey side of the river where the south ends of the Pattullo and Skytrain bridges touch land.

The North Surrey area had many riches; deer, elk and game birds were abundant. The Fraser and other streams yielded fresh water fish and the all important salmon during spawning seasons. Salal berries, cranberries and huckleberries were gathered from the bogs and forests. The Kwantlen dug the roots of cinquefoil and wild clover to steam and eat. The area also provided material for tools, baskets and the many other items used by the First Nations people.

The Kwantlen Park area, immediately west of Surrey City Centre, was a place of refuge for the Kwantlen nation. The Southern Kwakiutl or "Laich-kwil-tach" people from the Campbell River region regularly raided the Kwantlen nation for slaves and goods. The park area was a close, convenient place to retreat to. It had good water in a small lake and stream that ran through the park. There were many open pockets in the forest where one could set up camp without being found. The high ground overlooking the river also made it easy to watch for any approaching raiders.

In 1782, a great calamity struck the Kwantlen nation, which by this time numbered thousands. A smallpox epidemic, coupled with various other diseases, swept north through the west coast tribes. Within 15 years, the Kwantlen nation was reduced to fewer than 200 survivors.

Tree burial was common among the Kwantlen nation. The dead would be wrapped in blankets and deposited in a large box capable of holding the remains of several persons. Large boxes were left on the ground, but smaller boxes would be placed in a tree. The Royal Engineers and the first white settlers encountered a large number of skeletons in burial boxes hanging in the trees. It is believed that the Royal Engineers persuaded the Kwantlen to take down and rebury their dead in a burial ground. Father Dereau laid them to rest in two or three graves marked with one large wooden cross. This site, located in present-day Kwantlen Park, was used as a cemetery for the Kwantlen nation until the 1920s.

In 1871, the Kwantlen nation was deeded a 40 acre (16 hectare) site on Old Yale Road as part of their treaty lands (Kwantlen Indian Reserve #7). In 1954, the City of Surrey purchased the 40 acre reserve from the Kwantlen nation for \$40,000. By 1956, K.B. Woodward Elementary School was built on the site. The opening of West Whalley Junior Secondary followed in 1957. In 1959, Surrey decided to use the remaining portion of the former Kwantlen Reserve to create a park for Whalley. Today, this park is known as Royal Kwantlen Park.

Sources:

http://members.shaw.ca/jack_brown/kwantlen.html http://www.kwantlenpark.ca/in/history01.htm

2. Settlement & Development

Settlers began pre-empting land in the vicinity of present-day Surrey City Centre as early as the 1880s (earlier along the river).

In 1908, Surrey Council requested a grant to build a road from the old Fraser Bridge in South Westminster, southward up Peterson Hill to present-day 108th Avenue. The new road cut off a portion of the Old Yale Road known as "Snake Hill" because of its steep, dangerous curves. This route later became part of the King George Boulevard through Whalley.

Whalley's Corner: Where it all began...

In 1925, Arthur Whalley and family moved from a farm in Cloverdale to the area that was to perpetuate the family name. They purchased a three-acre triangle of land at the future intersection of Ferguson Road (108 Avenue), Grosvenor Road and the future King George Boulevard. They had the land cleared and spent the first winter in tents on the site, where they built a service station, which included a small general store, soft drink stand, and tourist cabins. The original family house (since moved) was built behind the station.

The intersecting roads did not exist at that time but this was the first gas station out of New Westminster, and the area became known as Whalley's Corner. It is probably no coincidence that a service station should be built here at this time. In 1923, the Pacific Highway (passing through future Whalley) had been paved all the way to the U.S. Border. With the proliferation of the automobile already evident, Arthur Whalley anticipated the strip development that would begin to appear along major roads by the 1940s.

The opening of the Pattullo Bridge in November 1937 provided the impetus for more rapid settlement of North Surrey. When the tolls were removed from the Pattullo Bridge in 1952, the Whalley area saw a major commercial and residential building boom.

Binnie Block: The expansion of commercial development

The Whalley family's neighbours included the Binnie family. Tom Binnie established the first real estate office in Whalley. In 1947, his "Binnie Block" was one of the first commercial buildings along the highway, with the Cameo Theatre and a branch of the Bank of Nova Scotia. The same year also marked the official opening of a post office at Whalley's Corner.

The bulk of the initial commercial development occurred as ribbon development along the highway north and south of Whalley's Corner. The late 1950s saw the Dell Shopping Center open as the first of the centralized one-stop shopping centers. 1972 saw the opening of Surrey Place Mall and the growing predominance of that district as Surrey's predominant shopping area.

After the first Board of Trade was organized, a contest was started to rename Whalley's Corner. Among the names suggested was "Binnieville", in honour of Tom Binnie, who had contributed to fostering Whalley's growth as a commercial centre. Ultimately public support favoured retention of the "Whalley" designation, without the "corner" which was thought to be too unsophisticated for a district with aspirations to being a modern commercial centre. The new name was officially adopted in 1948.

Source:

http://www.surrey.ca/culture-recreation/2409.aspx

Bolivar Heights

Bolivar Heights takes its name from the Bolivar family who arrived in Nova Scotia from Germany in 1751 and settled in Lunenberg, which had a growing German community. Like many Canadians, Dennis Bolivar was lured from the east coast of Canada to the west coast by the promise of gold. He passed through Vancouver on his way to the Yukon and then returned to settle in Vancouver, where he began his family. His son Haddon (1892-1976) was the Bolivar who developed the Bolivar Heights neighbourhood.

Haddon was married to his wife Laura for 60 years and they had seven children together: Merle, Bernice, Geraldine, Audrey, Dean, Myrna, and Earl. In 1913 Haddon and his father began a chick hatchery on Latimer Road. They supplied chicks to the poultry farmers in the Fraser Valley. The original barn is still standing and in good condition.

The Depression affected Haddon Bolivar's business as it did so many others'. After his business closed, Haddon moved to North Surrey in 1933 and restarted his chick hatchery at Bolivar Road and King George Highway. By this time, Haddon was also the President of the BC Hatchery Association. The barn and

hatchery were across the street from their large 3-storey home. The hatchery was quite a presence in the 40's and 50's as people drove down the King George Highway. It had a neon sign with fighting roosters on either side.

During this time, Haddon took an opportunity to buy property northeast of his previous location. This was the beginning of clearing land for residential development in what is now known as Bolivar Heights. Haddon believed in giving back to his community. He cleared the field for the Whalley Athletic Park and helped provide the fences and bleachers. Along with Gord Wilson and Tom Binnie, he was instrumental in beginning the Whalley Athletic Association. They formed the original men's ball team, the Whalley Chiefs. Eventually they founded two teams and provided bursaries for postsecondary education.

Haddon and Laura Bolivar had a dream of a local hospital. When they moved out of their large home they used the home for Florence Nightingale Hospital. The home was moved just east of its first location and in 1957 the 50-bed hospital was opened.

Laura Bolivar was active in the Catholic Women's League and in the Surrey Memorial Hospital Auxiliary. Dean Bolivar was active with the Kinsmen throughout the 1950s and his sister ran Merle's

Salon from 1946 to 1952. Dean's son Rodney owned the Hockey Shop at 135th and 104th Avenue.

Source:

http://downtownsurreybia.com/wp-content/uploads/2010/08/NewView June2008 Issue 27.pdf

The Junction

The intersection of Westminster Road (now 100th Avenue), the Trans-Canada Highway (now Fraser Highway), and King George Highway (now King George Boulevard) was known for many years as "The Junction." This well-known intersection helped define the boundaries of Whalley. In fact, when asked where Whalley begins and ends, many locals will still tell you that Whalley spans from Peterson Hill to the Junction.

The Junction was home to a variety of businesses including the "White House", a popular restaurant, bar, and dancehall. In the 1940-1960s, Surrey had a quite a few "Supper Clubs" – restaurants that turned into dance halls. The White House was one of these.

DINE AND DANCE

W. Specialize in Private Weddings & parties Mrs. V. M. M. Schwab, Proprietoress

1660 Trans-Canada Highway

City of Surrey Archives
1. East-West Roads in Surrey City Centre

Avenue	As shown on 1938 map	As shown on 1957 map
96 th Ave	Townline Road	
97 th Ave		Hume Road
97A Ave		Bullock Road
98 th Ave		Hannah Road
98A Ave		Caslor Road
100 th Ave	Westminster Road	
100A Ave		Binnie Road
102A Ave	Dunn Road (102 in City Centre? TBC)	
102B Ave		Stead Road
103A Ave		Dowling Road
104 th Ave	Hjorth Road	
104A Ave		Leroy Road
105 th Ave		Larkin Road
105A Ave		McFarlane Road
106 th Ave	Darling Road (west of 132, east of 132 TBC)	
107A Ave		Mutch Road
108 th Ave	Ferguson Road	
109 th Ave		Gowan Road (west of 132, east of 132 TBC)
110 th Ave		Brentwood Drive
110A Ave		Cuthbert Road
111 th Ave		Gregory Road
112 th Ave	North Road	

- **96th Avenue: Townline Road** In 1859, the slash line for the survey for the north side of the township became Township Road. Townships are 6 miles square. This is the line 12 miles from the Canada/USA border and marked the northern line of the second township. Around the turn of the century Surrey Council changed the name of Township Road to Townline Road.
- Yale Road, Fraser Highway (1A) This was an all-weather road built from Brownsville east through the Fraser Valley to Yale. It provided access when the Fraser River froze over in the winter.
- **104**th **Avenue: Hjorth Road** In 1885, the Norwegian Hans Christian Hjorth was the first of a number of fishermen to move up from his Fraser River shack to locate on what became 104th Ave. He returned to his native Norway but his name remains. Hjorth Road has been on Surrey maps as far back as 1892.
- **112th Avenue: North Road** Broken parts of 112th Avenue extend along the north-facing slope of the south bank of the Fraser River, therefore the name North Road. The west end of 112th Avenue is in the vicinity of Pattullo Bridge.

2. North-South Roads in Surrey City Centre

Street	As shown on 1938 map	As shown on 1957 map
132 nd St	Roebuck Road	
132A St		Saskatchewan Road
133 rd St	Dean Road	Moth Road, Chaplin Road
133A St		Wagstaff Road
134 th St	Unwin Road	
134A St		McAlpine Road
135 th St		Burroughs Road
135B St		Bruce Road, Riverview Road
136 St (King	Peace Arch Highway	
George Blvd)		
136A St		Deanna Road, Speers Road, Torkington Road
137 th S		Devon Road, Kathleen Road
137A St		Robert Road, Taylor Road
137B St		Cunningham Place
138 th St		Rowberry Road
138A St		Hoehn Road
139 th St		Forsythe Road
139A St		Cecil Road, Ness Road
140 th St		Nichol Road

Source:

http://members.shaw.ca/jack_brown/namestonumbers.html

D. Identified Heritage Resources

1. St. Mary's Ukrainian Greek-Orthodox Church

10765 135A Street | Surrey Heritage Register | Not currently protected

Description of Historic Place

St. Mary's Ukrainian Greek-Orthodox Church is located in a mixed commercial and residential part of the Whalley neighbourhood of Surrey. Its distinctive roof form is a landmark in the area.

Heritage Value

St. Mary's Ukrainian Greek-Orthodox Church is significant as a landmark place of worship for over half a century. A large population of Ukrainian-Canadians were among the many groups of people that settled in Whalley, and they soon recognized the need for their own place of worship. After the church property was purchased about 1948, through donations and fundraising, construction on the church began in 1950, and was completed in 1955 with volunteer labour. The use of the historical style for the church, at a time when many churches chose to build in new modern styles, indicated a strong desire to maintain a distinct community identity.

St. Mary's is valued for its traditional Greek-Orthodox architectural features, such as the cross gabled roof on a Greek cross plan, with an octagonal dome over the central interior space. The interior also features traditional elements such as a carved iconostasis screen. It remains a symbol of the Ukrainian community, and traditional Ukrainian Greek-Orthodox services are still held at St. Mary's.

St. Mary's is also significant for its association with the development of the Whalley neighbourhood, which originated as a local service centre after the Pacific Highway was paved in 1923. This became a favoured location for auto-based businesses, and local growth accelerated with the opening of the Pattullo Bridge in 1937, and the completion of the King George Highway in 1940. The transportation corridors throughout the area facilitated rapid settlement after the end of the Second World War.

Character-Defining Elements

Key elements that define the heritage character of St. Mary's Ukrainian Greek-Orthodox Church include its:

- location near the centre of Whalley;
- continuous use as a Ukrainian Greek-Orthodox church;

- form, scale and massing as expressed in the complex three dimensional articulation, Greek cross plan, bell towers flanking the central entry and a central octagonal dome marking the crossing of the transepts;
- traditional elements of Greek-Orthodox church architecture, including the concave flared octagonal dome and octagonal turret roofs surmounted by Orthodox crosses, round-arched window openings and the interior cruciform volume;
- wood frame construction, with wooden siding under the later vinyl siding;
- exterior elements such as: sheet metal cladding on the domed roofs; square, partially inset bell towers on each side of the central front entry; complex fenestration with multi-paned single-assembly sash surmounted with round-arched tops with fan pattern muntins; and a single octagonal window above the front entry;
- interior elements such as: a carved iconostasis screen and coloured glass panels in the windows;
- twin brass name plaques flanking the central front entry, in English and Ukrainian; and
- associated landscape structures such as a wrought iron fence with concrete fence posts and a concrete arch marking the entrance.

2. Goodmanson Building (Round Up Cafe)

10449 King George Boulevard | Surrey Heritage Register | Not currently protected

Description of Historic Place

The Goodmanson Building, which houses the Round Up Cafe, is a one-storey commercial building located at the north end of a commercial strip development on the King George Highway, in the Whalley neighbourhood of Surrey. A prominent neon sign, reading 'Round Up Cafe', overhangs the sidewalk above the main entrance.

Heritage Value

Built in 1949, the Goodmanson Building is valued as a testament to Whalley's origins as an automobile-oriented service center and as a representation of the type of single-storey commercial strip development that defined the area's character for decades. After the Pacific Highway was paved in 1923, Whalley

became a favoured location for auto-based businesses. Local growth accelerated with the opening of the Pattullo Bridge in 1937 and the completion of the King George Highway in 1940. After the tolls were removed from the Pattullo Bridge in 1952, Whalley experienced a major commercial and residential building boom.

The Goodmanson Building is also significant as the location of the Round Up Cafe, which has served the Whalley neighbourhood for over fifty-five years. Len Goodmanson built the original structure on the property in 1949, housing the Round Up Cafe, which Goodmanson owned until

1961. Since 1973, the restaurant has been owned and operated by the Springenatic family, who have maintained the essential roadside diner character, appearance and menu. Typical of the era in which it was established, the large neon sign was a response to the width of the street and the speed of passing cars, enticing customers with its bold shape and colours. Such signs have seldom survived in connection with their original businesses; the Round Up Cafe and its neon sign are therefore a rare combination. The name of the restaurant recalls the postwar popularity of Western stories, both in Hollywood movies and in the emerging medium of television.

Character-Defining Elements

Key elements that define the heritage character of the Goodmanson Building include its:

- location adjacent to King George Highway with no setback from front and side property lines
- commercial form, scale and massing as exemplified by its one-storey height, rectangular plan, central recessed entry and flat roof
- wood frame construction with stone masonry on storefront under later stucco and aluminum
- prominent projecting 'Round Up Cafe' sign with metal sign can and neon tubing overhanging sidewalk above main entrance
- plate glass storefront windows
- interior features, such as original seating configuration and kitchen cupboards continuous use as a diner

3. Roll's Carpenter Shop

13946 Fraser Highway | Surrey Heritage Register | Protected by HRA By-law, 2007, No. 16362

Description of Historic Place

Roland Earl Wilfong and Olive Anne Wilfong acquired a block of eight approximately 1-acre lots between Pacific Highway (now Fraser Highway) and Townline Road (now 96 Avenue) immediately west of Nichole Road (140 Street). Shortly thereafter, "Rolls Carpenter Shop", likely named after the owner, was built facing Pacific Highway, later

becoming the Trans Canada Highway and now Fraser Highway. The land was acquired in 1969 and remained in the Lehman family until 2006. It is not certain whether the shop ceased to operate before or after family ownership changed.

Character-Defining Elements

Key elements that define the heritage character of Roll's Carpenter Shop include its:

• "Boom town front" (false storefront) facing Fraser Highway.

- The large storefront four-pane wood windows;
- The existing "unique wood appliqué sign" (the "Sign") with individual letters mounted in a semi-circular fashion on the false front;
- The wrap around shed roof along Fraser Highway;
- The shallow-pitched gable roof with integrated vents;
- The brick chimney;
- The exterior metal siding on the upper portion of the building;
- The horizontal wood cladding at the base of the building;
- The wood fascia boards;
- The wood windows and doors, style and trim (turquoise in colour, in keeping with the era of construction);
- The relationship of the building to the street, the site, and to natural grade.

4. King George Boulevard

Surrey Heritage Register | Not currently protected

In original legal plans from the 1930's, the road connecting the Patullo Bridge with the Canada-US border crossing at Douglas was called the "Peace Arch Highway". Following the 1939 Royal Visit of King George VI and Queen Elizabeth, Surrey Council approved the renaming of this road to "King George VI Highway" in April 1940 by notice in the BC Gazette. The road was commonly known as King George Highway until 2009 when Surrey Council approved the renaming of the road to King George Boulevard.

The generally accepted historical account is that as a commemoration of the Coronation of King George VI in 1937, both sides of King George Highway from the Patullo Bridge to the Peace Arch were planted at approximately 100 foot intervals with English Oak trees imported from Great Windsor Park, England.

Disease and the development of lands along King George Highway over the years have claimed many of these trees. The main remaining concentration is located in South Surrey between the Nicomekl River and 8 Avenue. Some maple and other species of trees were part of this same planting plan, some of which are located north from Highway No. 10 towards Newton.

5. Ponderosa Pine (Pinus ponderosa)

10375 - 133 St. | Heritage Tree | Not currently protected

6. Giant Sequoia (Sequoiadendron giganteum)

10375 - 133 St. | Heritage Tree | Not currently protected

E. Potential Heritage Resources

The following sites have been identified as potential heritage resources in Surrey City Centre. They are representative examples of the character of the older building stock in the area. Further assessment would be required to determine whether they possess sufficient heritage value to merit addition to the Surrey Heritage Register.

1. 10522 King George Boulevard, Rickshaw Sign

Preliminary assessment:

This neon sign has been a landmark along King George Boulevard for many years.
Previously not considered for addition to the Surrey Heritage Register based on HAC recommendation of December 11, 1997 when it was determined that the sign was from the 1970s. More recent research indicates that the sign likely dates from at least the mid-1960s.
Potential for addition to Surrey Heritage Register (further assessment required).

- Private ownership.

2. 13667 Grosvenor Road

- This house has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage
- Register (further assessment required).
- Potential for adaptive re-use as unit/amenity building as part of future townhouse/apartment development or small scale commercial.
- Designated for up to 2.5 FAR residential. Mixed-use could be considered if owner agrees to enter into HRA.
- Private ownership.

3. 13683 Grosvenor Road

Preliminary assessment:

- This house has not previously been considered for addition to the Surrey Heritage Register (further assessment required).

Potential for adaptive re-use as unit/amenity building for future townhouse/apartment development (designated for up to 2.5 FAR residential).
Private ownership.

4. 13697 Grosvenor Road

Preliminary assessment:

House has not previously been considered for addition to the Surrey Heritage Register.
May or may not be good candidate for addition to Surrey Heritage (further assessment required).

- Potential for continued use as a singlefamily home (designated for 0.6 FAR residential).

- Private ownership.

5. 13761 Grosvenor Road

Preliminary assessment:

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- HRA could be negotiated through rezoning/subdivision.

6. 13821 Grosvenor Road, Surrey Vietnamese Alliance Church

- Building has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential candidate for adaptive re-use as day care, community facility (designated for future park).
- Private ownership.

7. 13842 Grosvenor Road

Preliminary assessment:

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

8. 13834 Grosvenor Road

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

9. 13723 Larner Road

Preliminary assessment:

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

10. 13809 Berg Road

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

11. 13753 108 Avenue, Ukrainian Holy Cross Catholic Church

Preliminary assessment:

13642 Larner Road

12.

- Building has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).

- Potential for continued institutional use or for adaptive re-use as amenity building as part of future townhouse/apartment development.

Currently designated for up to 2.5 FAR residential. Mixed-use designation could be considered if owner agrees to enter into HRA (pending outcome of further heritage assessment).
 Private ownership.

- Excellent and well-maintained example of early suburban bungalow.
- House has not previously been considered for addition to the Surrey Heritage Register.
- Unlikely candidate for addition to Surrey Heritage Register (further assessment required).
- Likely low potential for adaptive re-use as unit/amenity building as part of future townhouse/apartment development due to style/age of home (designated for up to 2.5 FAR residential).
- Private ownership.

13. 13674 111 Avenue

Preliminary assessment:

- Excellent and well-maintained example of early suburban bungalow.
- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

14. 13756 112 Avenue (also small barn on property)

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Potential for HRA to be negotiated through rezoning/subdivision.
- Private ownership.

15. 11122 134A Street

Preliminary assessment:

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

16. 10689 140 Street

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential candidate for adaptive re-use (designated for future park)
- City ownership.

17. 10504 139 Street

Preliminary assessment:

- Building has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).

 Potential for continued institutional use or for adaptive re-use as part of future townhouse/apartment/commercial development (designated for up to 2.5 FAR mixed-use).
 Private ownership.

18. 13219 + 13229 104 Avenue

- This house has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for adaptive re-use as unit/amenity building as part of future townhouse development
- (designated for up to 2.5 FAR residential; interface with single family west of plan area).
- Private ownership.

19. 9569 134A Street

Preliminary assessment:

- This house has not previously been considered for addition to the Surrey Heritage Register.

- Potential for addition to Surrey Heritage Register (further assessment required).

- Potential for adaptive re-use as unit/amenity building as part of future townhouse/apartment development (designated for up to 2.5 FAR residential).

20. 13240 100 Avenue

- House has not previously been considered for addition to the Surrey Heritage Register.
- Potential for addition to Surrey Heritage Register (further assessment required).
- Potential for continued use as a single-family home (designated for 0.6 FAR residential).
- Private ownership.

F. Potential Heritage Interpretation Opportunities

1. Whalley's Corner (5 Corners)

Grosvenor Road, King George Boulevard, 108th Avenue

- Potential for "unique treatment for the "Five Corners" intersection".
- Potential for public plaza in vicinity of this location.
- Potential for interpretation/public art related to Arthur Whalley/Whalley's Corner.

2. Binnie Block

East side of King George Boulevard north of 108th Avenue

- In the short term, there may be potential for nurturing the existing "eclectic" businesses/encouraging maintenance of the 1940s buildings.
- In the long-term, potential for interpretation.

3. The Junction

100th Avenue and King George Boulevard

- Potential for unique treatment of this intersection.
- Potential for a plaza to be incorporated into new development.
- Potential for re-introduction of the place-name "the Junction".
- Potential for interpretation related to the significance of this intersection.

4. Dell Shopping Centre

10558 King George Boulevard

 Potential for interpretation related to the significance of one of Surrey's oldest shopping centres, designed as a shopping plaza oriented to the Highway.

5. The "Whoopee-Dipper" and Peat Bog

104th Avenue and King George Boulevard

The Whoopee-Dipper (a roller coaster for cars) was constructed near King George Highway and 104th Ave in 1929. A peat bog also existed in this vicinity. Surrey writer, Bill Hastings, once penned an article titled to the effect of "How Surrey defeated the Nazis" in reference to the exports from the Peat Bog to the U.S. during WWII.

• Potential for heritage interpretation or public art in this vicinity.

6. Bolivar Mansion

13453 111A Avenue (relocated)

- This house was once home to Haddon Bolivar and his family.
- The building has been significantly altered so the potential for restoration is very low
- Potential for interpretation related to the Bolivar family and the Florence Nightingale Hospital.

7. Bolivar Hatcheries

• Potential for interpretation related to the Bolivar family, the operation, and the neon signage.

8. North Surrey Recreation Centre

• Potential for interpretation related to the community's fight for a recreation centre in their neighbourhood.

9. Whalley Little League

- Storyboard already exists.
- Potential to revitalize storyboard.

10. Bolivar Creek

• Potential for nature interpretation.

11. Quibble Creek

• Potential for nature interpretation.

A-2.5

Mid Century Modern in Surrey's City Centre

Mid-Century Modern in Surrey's City Centre

1. INTRODUCTION

Background

As part of the City Centre Land Use Plan process, a Heritage Review was conducted in 2011 to uncover the historical assets in the plan area.

As a result of the Heritage Review, a Historic District was identified in the City Centre Plan. Many buildings dating back to the mid-century modern timeframe were identified; the highest concentration of these buildings was found to be in the northern section of the plan area. This area has now been identified as the "Historic District" in the draft City Centre Plan document. Figure 1 shows a sketch of this district area.

In addition, special street blades signs have been developed and installed around the Whalley's Corner at 108 and King George Boulevard to identify the Historic District (Figure 2).

Purpose of the 2015 Review

While the 2011 review captured the early settlement and the mid-century development in Surrey's City Centre, it did not provide details of the specific Mid-Century Modern structures and the related design elements. This study will supplement the previous review and provide additional detail on the mid-century modern era of buildings in the City Centre in order to support the development of the Design Guidelines in the Historic District of the City Centre Plan.

Figure 1. Historic District in Surrey City Centre

Goals of the Review

Mid Century Modern design predominately influenced earlier development in the North Surrey area. Commercial development in this area increased after the construction of the Pattulo Bridge in 1937. The development momentum increased in the mid to late 1950's, after the bridge tolls were removed in 1952. During this period, Whalley became a vital, prosperous and popular commercial district. The building boom during this time was characterized by the prevalence of Mid-Century Modern style.

Much of the value of this architectural era has not been appreciated until more recently. We are now seeing cities throughout North America starting to embrace their stock of mid-century modern structures. They are finding that while some buildings have been maintained over the past 60 years, others are starting to deteriorate, or have been vacant and have led to decline of neighbourhoods. As a result many cities are now promoting preservation, or adaptive reuse through renovation to catalyze transformation and economic development of these areas.

This review of the City Centre mid-century modern era will help support the preservation, as well as redevelopment and place making & revitalization of the Historic District in City Centre. It will also help establish a design aesthetic that is unique and authentic to Whalley, and provide a basis from which to create place making and design guidelines for future redevelopment of the Historic District in the City Centre Plan. The Mid-Century Modern Review will:

Support the City Centre Plan

- Inventory significant design elements that contribute to the design aesthetic of early development in Whalley
- Provide direction and guidelines for preserving the mid-century character for proposed renovations to existing buildings in the Historic District in the City Centre Plan
- Provide a basis for Design Guidelines for new development within the Historic District of the City Centre Plan

Promote a Positive Image of Whalley

- Attract a new appreciation of the existing Mid-Century Modern architecture in Whalley
- Show the positive value of the existing building landscape through historical appreciation of Whalley
- Educate the businesses and residential community on Mid-Century Modern structures in Whalley

2. MID-CENTURY MODERN DESIGN

What is Mid-Century Modern?

- Mid-century modern is an architectural, interior, product and graphic design that generally describes mid-20th century developments in modern design, architecture and urban development from roughly 1933 to 1965. The timeframe is a modifier for the larger modernist movement, which has roots in the Industrial Revolution at the end of the 19th century and also in the post-World War I period.
- The movement began in Europe after WWI, but gained momentum during the second half of the twentieth century; the influence was more visible in Canada in the 1940's.
- The aesthetic could be described as "post-war minimalism", a departure from placing primary importance and building on historical styles of the past, and a move towards looking into the future with a "modern" based approach.
- Design elements includes: clean simple lines, use of geometrics, and natural materials. Designers were fans of aluminum, steel, wood and fiberglass, and plainly painted masonry; allowing an "honesty" in materials.

Post & Beam Construction

- A building method using a framework of upright and horizontal beams.
- This type of construction allows for open spaces that flow from the inside to the outside with high transparency between the two realms.
- It creates low, horizontal massing, flat roofs, with emphasis on horizontal planes and broad roof overhangs, and floor to ceiling windows.

Lack of Ornamentation:

- use a clean lines and aesthetic
- Simple construction features

Local example: 13511 108 Ave Surrey

Other examples of Post & Beam Construction

Rectangular Forms and Horizontal and Vertical Lines

- Low-sloping and flat rooflines are common among all types of structures.
- Office and commercial structures are commonly found with flat roofs, while residential and institutional structures are found to showcase low sloping rooflines as well as butterfly rooflines.

Vertical Mullions

- Vertical mullions are a distinctive feature of many mid-century modern office buildings.
- They are structural elements which divide adjacent window units. They can be metal or concrete. Placed vertically, they are designed to exaggerate a building's true height.

Strong horizontal line- 13511 108 Ave Surrey

Vertical Mullions 9656 King George Blvd

Strong Vertical Lines: 13333 Old Yale Road

Honesty of Materials:

- Wood is often stained rather than painted to express its natural character.
- Brick is often used for commercial, institutional, and office structures. Several patterns, such as the Coursed Ashlar, Common Bond, and Dutch Cross Bond patterns, are favored by mid-century modern design style and used to add visual interest.
- The Stacked Pattern (or Stacked Bond) was the most heavily used pattern. The pattern is made of rows of stretchers with each stretcher centred on the stretcher below it. The invention of veneer construction occurred during the era, allowing the stacked pattern to exist.

Stacked Bond Brick

Roman Brick

Coursed Ashlar

Wood Soffit & Floor to Celiing Windows

Concrete as Finishing Material

- Concrete masonry was used as a finishing material, rather than just structural element
- Pre-cast concrete shapes were used bold geometric shaped canopies
- Concrete blocks with geometric patterns were used to create walls, screens and forecourt enclosures
- Ribbed concrete walls were used for interest

Concrete Block Wall

Geometric Shapes

 Bold and unique geometric shapes were used to create building forms and also for building details

Michigan

Surrey

Cylindrical Element

 Cylindrical elements are often found in Mid-Century Modern construction. Ceramic tile and/or concrete aggregate are common materials used to clad these elements

Michigan

Surrey

Muted Colour Palette

In the 1950's many muted colours were part of the paint palette including yellow, grey, blue and green.

Breezeways and Forecourts

- Forecourts are an open area of • varying sizes created for the pedestrian that lies before the entrance of a structure that has decorative landscaping and is used as a public space.
- The purposes of forecourts are broad: for commercial and office structures a forecourt may serve as a recreational area to be used at lunchtime or on breaks.

3. MID-CENTURY MODERN REINTERPRETATION

Mid Century Modern Elements in New Construction

Restaurant with Mid-Century Modern Elements

- A. Flat Roof Line
- B. Stacked Bond Brick Pattern
- C. Large Fixed Glass Walls
- D. Post & Beam Construction that connects inside with outside
- E. Concrete Block Pattern Walls
- F. Geometric Shaped Concrete Bench with natural wood accent

Mid Century Modern Elements in New Construction

Institutional Buildings with Mid-Century Modern Elements

- A. Large Overhang with Wood Soffit
- B. Large Fixed Glass Area
- C. Concrete Formed Stairs
- D. Concrete Cast Wall with Geometric Cut-out Shapes
- E. Concrete Block Pattern Wall
- F. Connection of Indoors with Outdoors

Surrey City Hall

Mid Century Modern in New Construction

Mixed Use Development with Mid-Century Modern Elements

- A. Flat Roof
- B. Concrete Cast Wall with Geometric Cut-out Shapes
- C. Strong Vertical Massing
- D. Extensive Use of Glass

3 Civic Plaza Building, Surrey (currently under construction)

Mid Century Modern in New Construction

Office Building with Mid-Century Modern Elements

- A. Flat Roofline & Horizontal Massing
- B. Cantilevered Overhang
- C. Extensive use of Glass
- D. Butterfly Roof Element

City Centre 1 Medical Building, Surrey

4. BUILDING INVENTORY

The following section provides an inventory of buildings that were built in the mid-century era in Whalley. These buildings in the Downtown Historic District exhibit evidence of multiple stages of construction, reconstruction, and remodeling. The study finds that two buildings and one sign that warrant a detailed heritage evaluation. These have been identified as potential heritage resources, and could be considered for addition to the Heritage Register.

The remainder of the buildings have been categorized as having "heritage value". These buildings may not warrant preservation due to several factors including significant alteration, or major deterioration, or do not have significant individual value for preservation. However these buildings are worth noting, because they do contribute to the historic Mid-Century Modern character of the Whalley area.

The Inventory has been organized into 3 categories:

- On the Heritage Register
- Potential Heritage Resources
- Additional Site of Heritage Value
On the Heritage Register

Goodmanson Building (Round Up Café)

10449 King George Boulevard

- Sign on the Goodmanson Building—built in 1949
- One of two of the rare surviving examples of neon illuminated signs that dominated the King George downtown commercial corridor.
- On the Heritage Register

North Surrey Medical Building 9656 King George Boulevard

Built in 1969, by Architect Peter Cole, this building is constructed of simple concrete material and glass and presents a muted colour palette.

Concrete is used to frame windows and doors and is shaped in a unique geometric form. The arches and columns and cantilevered areas are clad with concrete to add simplicity to the structure.

The style embraces the weightiness of masonry forms, exaggerates sense of mass, heavy materials, and unusual geometric shapes.

Building elements include:

- heavy massing
- flat roof
- concrete form framed windows
- unique geometric forms in eaves
- strong vertical lines created by use of concrete vertical mullions
- muted colour palette
- dramatic shaped pre-cast concrete canopy supported by slender metal columns

Front

Rear

North Surrey Medical Building 9656 King George Boulevard (continued)

Building elements include:

- glass door with narrow aluminum frame
- terrazzo floors (interior)

Caption that appeared with the 1969 photograph to the right stated: "This half million dollar medical centre built by North Surrey doctors brings a distinctly oriental atmosphere to King George Highway just north of 96th Avenue."

Heritage Evaluation Recommended

Cameo Theatre

13551 King George Boulevard

Part of Binnie Block, started construction in 1947, this building was built in 1954. This was a very recognizable building for the community

(can we get any written info from archives?? To support this)

Design elements include:

- simple clean lines
- minimalist design
- recessed entry
- structural canopy
- flat roof
- glass door with narrow aluminum frame

Projecting sign above canopy (not original), but use of projecting sign above canopy is part of the original design aesthetic. Material on the recessed entry has been altered from the original glass doors to the stonework.

Heritage Evaluation Recommended

Rickshaw Sign 10522 King George Boulevard

- Monument signs, intended to capture the attention of motorists, were a prominent feature of mid-century design.
- This sign is one of two of the rare surviving examples of neon illuminated signs that dominated the King George downtown commercial corridor.
- Built approximately in mid 1960's
- Includes neon tube and single lights

On the Heritage Inventory

Hassell Building

13655 & 13659 King George Boulevard

Built in 1963 for Mr. Hassell, who was a prominent Surrey figure. During the 1960's he was heavily involved in community groups. In photograph below, he is shown in a Jaycee event in Cloverdale (1963), a Chamber of Commerce dinner in White Rock (1963), and a hospital presentation in 1965. Mr. Hassell is listed as the Hospital Board Chairman at Peace Arch Hospital, a member of the White Rock Chamber of Commerce, and a regional Vice President of the Cloverdale Jaycees.

Design elements for this building include:

- concrete formed around windows
- muted colour palette
- flat roof
- clean geometric lines
- horizontal massing
- brick work
- structural canopy/large roof overhang
- glass door with narrow aluminum frame

Alterations include newer concrete blocks that likely replaced old concrete cast planter, brick work likely not original.

Hassell Building 13655 & 13659 King George Boulevard (continued)

Jenson Hamilton Building

13639 & 13649 108 Avenue

This building is currently the Metis Family Services Building. It was built in 1965, owned by Mr. Hassell and built for Jenkins and Hamilton.

The building is currently well maintained. It was significantly altered in a renovation in 1983 and was named the Whalley Professional Building. At that time the breezeway was enclosed to create a waiting room and reception area with one entrance. A patterned concrete block screening the windows was removed, and colour palette was changed

Design elements from the original structure that are visible today include:

- low profile and strong horizontal massing
- flat roof
- post & beam construction
- stacked bond brick on rear façade of building
- simple clean lines

Front Facade

Stacked Bond on Rear Facade

Enclosed breezeway area

Jenson Hamilton Building 13639 & 13649 108 Avenue

(continued)

- Originally, the building had an open courtyard and breezeway between two office buildings.
- Windows on the front elevation were screened behind a decorative concrete block wall.
- The brick was in a stacked bond pattern, and is still preserved on the rear façade.

Budget Appliances 13511- 108 Avenue

Built in 1963, this is one of the few remaining exposed post and beam construction office buildings still remaining in Whalley.

Design Elements include:

- Exposed post & beam construction
- structural transparency—with windows right up to eaves
- low horizontal massing
- emphasis of rectangular form
- clean and simple architectural lines.

Alterations likely include solid slab doors, paint on the wood beams and wood panelling on façade

Front Facade

Original Royal Bank (Now RCMP Office)

107___King George Blvd

The original Royal bank Building was built in 1974.

Design elements include:

- concrete walls
- Heavy massing
- Neutral colour palette using natural concrete colour
- Flat roof
- Clean simple lines
- Cylindrical element

Surrey Drugs (now Sprite Multimedia Systems) 13597 King George Boulevard

Part of Binnie Block (circa 1950's)

Design elements include:

- Geometrically linear
- clean simple lines
- suspended canopy (is now covered by signage, but original can be seen behind signage).
- glass door with narrow aluminum frame
- roman brick pattern is still original

Original roman bricks on façade exist today

Binnie Block

13539 & 13545 King George Blvd

- Part of Binnie Block, building circa 1950's.
- Don't know the name of the original businesses, but very run down now.
- Part of the original canopy is intact as well as roof form.

Original roof line and canopy is evident today

Flamingo Hotel and Shops

10768 & 10762 King George Boulevard

Originally built in 1962, this building was built with a strong mid-century modern aesthetic with brick and glass façade and strong horizontal lines.

The hotel has been heavily altered over time, undergoing many renovations. The individual shop fronts adjacent to the hotel still show elements of the original building.

Design Elements on small shops include:

- Narrow storefront widths
- Strong horizontal massing, clean lines
- Flat roof, low profile design
- Post & beam construction
- Large glass windows, aluminum lined (right up to eaves)
- Glass doors with narrow aluminum frame

Flamingo Hotel and Shops

10768 & 10762 King George Boulevard (continued)

• Originally a breezeway connected two sides of the building, with a café on one side and hotel on the other.

Dell Shopping Plaza

10580 & 10598 King George Boulevard

Surrey's oldest shopping plaza, built in late 1960's.

Design elements include:

- Low profile, clean lines
- Strong horizontal massing
- Structural canopy supported by slender metal columns
- Stacked bond brick on some storefront facades
- Large glass frontages on stores

Alterations: original canopy is covered with bubble canopy, and steel columns covered, some brick has been painted

Site is approved to undergo renovations to the façade.

Dell Shopping Plaza 10580 & 10598 King George Boulevard (continued)

Design elements include:

- Concrete patterned wall on 107
 Ave
- Breezeway with skylights
- Jealously windows
- Lighting under large roof overhang

Ukrainian Cultural Centre 10580 & 10598 King George Boulevard (continued)

The Ukrainian Cultural centre was built in 1964 and reflects the style of the midcentury. The neighbouring church was built with the historic style with Greek architectural features (when many churches chose to build in the modern style).

Design elements include:

- strong geometric shapes,
- concrete form and heavy massing.
- Aluminum framed glass doors on 108 Avenue.

Original building material has been covered with vinyl siding along 135A-St frontage and above entrance on 108 Avenue frontage and the concrete has been painted beige and blue. Area above 108 Avenue entrance appears to be altered with vinyl siding and window, original window might have been larger.

Surrey Post Office 10688 King George Boulevard

- Built in 1964 to replace (Whalley's Corner Post office from 1947)
- The building was renovated in 1975. The original façade was set further back from King George Blvd, a new addition was added along the street edge.

Original Kinsmen Place Lodge 13333 Old Yale Road

Built in 1974

- 1961 Whalley & District Senior Citizens Housing Society, a non-profit organization, is incorporated to provide seniors housing in Surrey.
- **1973** The construction of Kinsmen Place Lodge begins
- 2005 The Fraser Health Authority advises Kinsmen Place Lodge that the building requires either extreme updating or rebuilding in order to comply with the new regulatory codes for a complex care facility.
- **2006** Kinsmen Place Lodge negotiates to purchase land at 137A Street in Surrey.
- **2008** Lark Construction is secured as developer for the new building. Board and Society members approve the sale of the properties on Old Yale Road to help fund construction of a new building.

Design Elements include:

- Common bond brick
- Heavy massing
- Strong vertical lines
- Flat roof
- Pre-cast concrete arch details at cornices
- Muted colour palette

Resources:

City of Killeen, Texas, Killeen Historic District Design Guidelines, 2009

City of Southfield, Michigan, Southfield Mid-Century Modern Design Guidelines, 2012

Ricketts S., Maitland L, and Huckler J., <u>A Guide to Canadian Architectural Styles</u>, second edition, Broadview Press, 2004

Treleaven, Fern, The Surrey Story, Surrey, Museum and Historical Society, 1978

http://a2modern.org/2011/04/characteristics-of-modern-architecture/ (accessed September 2015)

ACKNOWLEDGEMENTS

The City of Surrey acknowledges the contribution and participation of the following individuals, organizations and staff members in the preparation of this Plan.

City of Surrey Staff

Preet Heer, Community Planning Don Buchanan, Transportation Engineering Patrick Klassen, Parks Planning & Design Mary Beth Rondeau, Urban Design Andrew Dong, Community Planning Douglas McLeod, Transportation Engineering Samantha Ward, Engineering Laura Hardiman, Engineering **Consultants** AECOM

David Chan, Aplin & Martin Patrick Cotter, ZGF Cotter

This page is intentionally left blank.

Surrey City Centre Plan

Planning and Development & Engineering Departments

City of Surrey 13450 104 Avenue Surrey, British Columbia V3T 1V8

APPROVED BY COUNCIL JANUARY 2017

